Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study, the use of the weakly basic anion exchange resins of phenol-formaldehyde (Amberlyst A 23), polyacrylate (Amberlite IRA 67) and polystyrene (Lewatit MonoPlus MP 62) matrices for removal of the reactive dye Remazol Black B (RBB) from aqueous solution and wastewater were investigated. RBB sorption on the anion exchangers was a time dependent process. Color reduction percentiles of 75.2, 33.9 and 25.1% in wastewater treatment were found after 216 h of phase contact time with Lewatit MonoPlus MP 62, Amberlyst A 23 and Amberlite IRA 67, respectively. Inorganic salts and anionic surfactant action influenced RBB uptake by the anion exchangers. The amounts of dye retained by the anion exchangers increased with a rise in temperature. The maximum sorption capacities calculated from the Langmuir model were 66.4, 282.1 and 796.1 mg g−1 for Amberlite IRA 67, Amberlyst A 23 and Lewatit MonoPlus MP 62, respectively. Regeneration of phenol-formaldehyde and polystyrene resins were possible using 1 M NaOH, 2 M KSCN, 1M KSCN in 40–60% methanol as well as 1 M NaOH in 60% methanol. [...]
EN
Lately there has been observed the increased presence of chlorates(VII) in the natural environment which can affect human health negatively. Therefore the removal of chlorate(VII) ions using the gel type resin functionalized with the tri-n-butyl ammonium (Dowex™PSR-2) from waters was studied. The main aim was to evaluate the effects of experimental conditions including contact time, initial solution concentration, pH and temperature on chlorate(VII) ions removal as well as the anion exchanger properties on chlorate(VII) ions sorption. It was found that only the pseudo second order model described the experimental data well and the intraparticle diffusion was not the rate-limiting step. According to the Freundlich model, the qe value was to be 69.26 mg/g at optimum conditions (pH 7.0 at 25 oC).
EN
Aminosilane modified silica was prepared and investigated for the adsorption of textile dyes such as C.I. Acid Orange 7 (AO7), C.I. Reactive Black 5 (RB5) and C.I. Direct Blue 71 (DB71) from aqueous media and wastewaters. The values of the sorption capacities obtained from the Langmuir isotherm model were: 5.3 mg g-1, 58.7 mg g-1 and 72.2 mg g-1 for AO7, DB71 and RB5, respectively. The affinity series of the dyes for the modified silica can be presented as follows: C.I. Reactive Black 5 > C.I. Direct Blue 71> C.I. Acid Orange 7. The influence of anionic surfactant (SDS) and sodium chloride on dye sorption was investigated in a system containing 100 mg L-1 dye and 0.1-1 g L-1 SDS or 1-25 g L-1 NaCl. The sorption capacities decrease with increasing concentration of SDS in the solution. Retention of AO7 and RB5 was reduced in the presence of NaCl. A satisfactory agreement of the experimental data with the pseudo second-order kinetic model was found. Effectiveness of the aminosilane modified silica in raw textile wastewater purification was confirmed.
EN
In the presented paper the use of a novel environmentally friendly aminopolycarboxylate chelating agent trisodium salt of methylglycinediacetic acid (MGDA) to inactivate various metal ions by complex formation in microporous anion exchangers and sorbents was tested. MGDA is a new generation of chelator, undergoing biodegradation. The removal of Cu(II) and Ni(II) ions from aqueous solutions in the presence of MGDA on microporous anion exchangers of the Lewatit group with different basicity of functional centres as well as on nitrolite and clinoptilolite was described. The studies were carried out by the dynamic (column) and the static (batch) methods. The influence of several parameters such as the concentration of analyzed metal ions, pH and temperature were studied with respect to sorption equilibrium. The sorption isotherms were obtained and fitted using the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models. Kinetic curves were also fitted using pseudo first order, pseudo second order as well as the intraparticle diffusion model equations to evaluate the most effective one. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.