A cDNA microarray (18 263 probes) was used for transcriptome analysis of bovine skeletal muscle (m. semitendinosus) in 12-month-old bulls of the beef breed Limousin (LIM) and the typical dairy breed Holstein-Friesian (HF, used as a reference). We aimed to identify the genes whose expression may reflect the muscle phenotype of beef bulls. A comparison of muscle transcriptional profiles revealed significant differences in expression of 393 genes between HF and LIM. We classified biological functions of 117 genes with over 2-fold differences in expression between the examined breeds. Among them, 72 genes were up-regulated and 45 genes were down-regulated in LIM vs. HF. The genes were involved in protein metabolism and modifications (22 genes), signal transduction (15), nucleoside, nucleotide and nucleic acid metabolism (13), cell cycle (9), cell structure and motility (9), developmental processes (9), intracellular protein traffic (7), cell proliferation and differentiation (6), cell adhesion (6), lipid, fatty acid and steroid metabolism (5), transport (5), and other processes. For the purpose of microarray data validation, we randomly selected 4 genes: trip12, mrps30, pycrl, and c-erbb3. Real-time RT-PCR results showed similar trends in gene expression changes as those observed in microarray studies. Basing on results of the present study, we proposed a model of the regulation of skeletal muscle growth and differentiation, with a principal role of the somatotropic pathway. It may explain at least in part the development of muscle phenotype in LIM bulls. We assume that the growth hormone directly or indirectly (through IGF-1) activates the calcium-signaling pathway with calcineurin, which stimulates myogenic regulatory factors (MRFs) and inhibits early growth response gene. The inhibition results in indirect activation of MRFs and impaired activation of TGF-beta1 and myostatin, which finally facilitates terminal muscle differentiation.
Myostatin (GDF-8) is a key protein responsible for skeletal muscle growth and development, thus mutations in the mstn gene can have major economic and breeding consequences. The aim of the present study was to investigate myostatin gene expression and transcriptional profile in skeletal muscle of Holstein-Friesian (Black-and-White) bulls carrying a polymorphism in the 5'-flanking region of the mstn gene (G/C transversion at position -7828). Real-time qRT-PCR and cDNA microarray revealed significantly lower mstn expression in muscle of bulls with the CC genotype, as compared to GG and GC genotypes. The direct comparison of skeletal muscle transcriptional profiles between the CC genotype and GG and GC genotypes resulted in identification of genes, of which at least some can be putative targets for myostatin. Using cDNA microarray, we identified 43 common genes (including mstn) with significantly different expression in skeletal muscle of bulls with the CC genotype, as compared to GG and GC genotypes, 15 of which were upregulated and 28 were downregulated in the CC genotype. Classification of molecular function of differentially expressed genes revealed the highest number of genes involved in the expression of cytoskeleton proteins (9), extracellular matrix proteins (4), nucleic acid-binding proteins (4), calcium-binding proteins (4), and transcription factors (4). The biological functions of the largest number of genes involved: protein metabolism and modification (10), signal transduction (10), cell structure (8), and developmental processes (8). The main identified signaling pathways were: Wnt (4), chemokines and cytokines (4), integrin (4), nicotine receptor for acetylocholine (3), TGF-beta (2), and cytoskeleton regulation by Rho GTPase (2). We identified previously unrecognized putatively myostatin-dependent genes, encoding transcription factors (EGR1, Nf1b, ILF1), components of the proteasomal complex (PSMB7, PSMD13) and proteins with some other molecular function in skeletal muscle (ITGB1BP3, Pla2g1b, ISYNA1, TNFAIP6, MST1, TNNT1, CALB3, CACYBP, and CTNNA1).
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.