Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Hot-electron noise is investigated for InGaAs and InAs quantum wells containing a two-dimensional electron gas channel in a pulsed electric field applied parallel to the interfaces. Noise sources resulting from hot-electron "thermal" motion, electron temperature fluctuations, and real-space transfer are observed. The experimental results on hot-electron "thermal" noise are used to estimate energy relaxation time in the field range where other sources do not play any important role. Measurements of noise anisotropy in the plane of electron confinement are used to discuss real-space-transfer noise. High-frequency noise technique is used to study hot-electron trapping, and trap location in InAlAs/InGaAs/InAlAs heterostructure channels is determined.
EN
Nanosecond-pulsed measurements of hot-electron transport were performed for a nominally undoped two-dimensional channel confined in a slightly strained Al_{0.8}In_{0.2}N/AlN/GaN and nearly lattice matched Al_{0.84}In_{0.16}N/AlN/GaN heterostructures at room temperature. No current saturation is reached because we minimized the effect of the Joule heating. The electron drift velocity is deduced under assumption of uniform electric field and field-independent electron density. The estimated drift velocity ≈ 1.5 × 10^7 cm/s at 140 kV/cm bodes well with the value of hot-phonon lifetime exceeding 0.1 ps.
EN
The two-dimensional gas in AlGaN/AlN/GaN heterostucture with a very thin (0.6 nm) AlN spacer was investigated by conductivity relaxation measurements in 86-300 K temperature range. The results show the presence of two exponential relaxation processes characterized by different characteristic time constants. Parameters of the fast and slow components of the processes differently depend on the electric field and temperature. The fast process is attributed to influence of the electric field on the barrier formed by the spacer, while the slow process is attributed to the hot-electron capture out of the channel followed by electron thermal release.
EN
Hot-electron transport and microwave noise are investigated for n-type 4H-SiC (n=2×10^{17} cm^{-3}) subjected to a pulsed electric field applied parallel to the basal plane. At room temperature, the negative differential conductance, masked by field ionization at the highest fields, is observed in the field range between 280 and 350 kV/cm. The threshold fields for the negative differential conductance and field ionization increase with lattice temperature. The results on microwave noise are used to evaluate the effective hot-electron temperature and the hot-electron energy relaxation time.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.