Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The studies were carried out to develop the mechanism of chitosan gel formation in the presence of glycerol phosphate GP, taking into account suggestions presented in the literature. The analysis was carried out on the basis of a change in the gel structure after conditioning in water.
EN
The original version of the article was published in Cent. Eur. J. Chem. 11(6) (2013) pp. 912–919. Unfortunately, the original version of this article contains a mistake in the Acknowledgement section. It should be written as “Partially financed from grant number 0680/B/H03/2011/40 and gratefully acknowledged. Paweł Mierczyński is a participant of START Programme.”
EN
The activity of monometallic Pd, Ru, Ni and Cu catalysts supported on spinel ZnAl2O4 for water gas shift reaction (WGS) was investigated. The physicochemical properties of each catalyst was studied by XRD, TPR, BET and chemisorption methods. The highest activity was obtained for Cu/ZnAl2O4 among the catalysts tested. The activation process carried out in a reducing atmosphere 5%H2-95%Ar in the case of Cu/ZnAl2O4 system lead to the catalytic activity improvement. In the case of copper catalysts, the water gas shift reaction proceeded by the redox surface mechanism between Cu0/Cu+. The PdZn alloy formation after reduction at 350°C was shown. [...]
EN
The aim of this paper was to investigate the physicochemical properties of palladium catalyst containing basic support MgO which was used in hydrodechlorination reaction with carbon tetrachloride. In order to characterize the investigated sample the catalyst was put to tests of XRD, TOF - SIMS, TG-DTA-MS and TPRH2 measurements, activity tests were also performed. The XRD and TPR results demonstrated the presence of PdOxCly species whose decomposition takes place above 700°C. The calcination of the Pd/MgO catalyst at 700°C resulted in the transformation of PdOxCly to PdO.
EN
Nickel catalysts supported on Na-mordenite were used for paraffin LTP56-H hydroconversion into liquid material as a possible component for engine fuels. The effects of none-catalytic thermal treatment and catalytic conditions-zeolite type and reaction conditions (solvent) on the process of liquefaction of LTP56-H paraffin and physicochemical properties of catalysts were studied. The physicochemical properties of catalytic systems were investigated using XRD, TPR, TPD-NH3 and SEM-EDS methods. [...]
6
64%
EN
Ternary CuO-ZrO2-Al2O3 catalysts promoted by palladium or gold were prepared and tested in CO hydrogenation reaction at 260°C under elevated pressure (4.8 MPa). The promotion effect of palladium or gold addition on the physicochemical and catalytical properties of CuO-ZrO2-Al2O3 catalysts in methanol synthesis (MS) was studied. The catalysts were characterized by BET, XRD, TPR-H2, TPD-NH3 methods. The BET results showed that the ternary system CuO-ZrO2-Al2O3 had the largest specific surface area, cumulative pore volume and average pore size in comparison with the promoted catalysts. The yield of methanol can be given through the following sequence: 5%Pd/CuO-ZrO2-Al2O3 > CuO-ZrO2-Al2O3 > 2%Au/CuO-ZrO2-Al2O3. We also found that the presence of gold or palladium on catalyst surface has strong influence on the reaction selectivity. The high selectivity of gold doped ternary catalyst is explained by the gold-oxide interface sites created on the catalyst surface and the acidity of those systems. The higher selectivity to methanol in the case of the palladium catalyst is explained by the spillover effect between Pd and CuO.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.