Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The cytotoxicity of chitosan with polyvinox (PCH) and crosslinked chitosan (CH) was studied and analyzed. Cell viability was determined by thiazolyl blue formazan (MTT) assay and cell morphology observations were carried out during cell culturing and MTT tests. Crosslinked chitosan was used as a protective foil (scaffold) for skin wounds. Studies in vitro and the other obtained in this work results prove that the studied materials CH and PCH do not cause cytotoxic activity to Balb 3T3 mouse fibroblasts. CH and PCH are promising biomaterials with prospective application as wound healing dressings.
EN
In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro) of thin films. Morphological changes of mouse fibroblasts (L929 cell line) after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.
EN
Investigations are presented in the preparation of a first aid haemostatic dressing that would exhibit an adequate haemostatic capacity in injuries and surgical wounds, an antibacterial activity to prevent primary and secondary infections, and offer safety in use
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.