Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study we aimed to produce AZ63 magnesium alloys containing different amounts of CaO, to investigate the nanohardness behaviour of the resulting alloys. These alloys were produced by mechanical alloying under argon atmosphere. Magnesium based alloys with the initial CaO content of 0.1%, 0.3%, and 0.5% were produced by high-energy ball milling, followed by process that involved cold pressing and sintering. These alloys were characterized using scanning electron microscopy, scanning probe microscopy, X-ray diffraction, and nanoindentation methods. Unloading segments of nanoindentation curves were analyzed using Oliver-Pharr method. Experimental results show that measured nanohardness exhibits a peak load dependence. As a result, in these alloys the microstructure and nanohardness depend on the content of CaO.
EN
In this work, we have intended to synthesize ZE41 Magnesium alloys having varying content of Ce of 0.3, 0.6 and 0.9 wt.% and to investigate mechanical properties of these alloys. Alloys were produced by mechanical alloying under argon atmosphere. Structural, and mechanical properties of these alloys were investigated by means of XRD, SEM and nanoindenter analysis. From the XRD data it is found that as the Ce content increases, the crystallite size also increases. On the other hand, the hardness of the alloys decreases with the increasing Ce content. Indentation results show that the measured hardness displays a peak load dependence. Load-independent hardness was calculated by Hays-Kendall approach. As a results, it was found that Ce-doping modifies the microstructure and hardness of the alloy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.