Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A combination of infrared and inelastic incoherent neutron scattering spectroscopies with the density functional theory and semi-empirical calculations was applied to propose an assignment of the vibrational spectra of 4-aminopyridine chloroantimonate(IV).
EN
Molecular vibrational spectra in 3, 3-dimethyl-1-butanol, (CH_3)_3 CCH_2CH_2OH, and 3, 3-dimethyl-2-butanol, (CH_3)_3CCHOHCH_3, were measured by the inelastic incoherent neutron scattering and mid infrared spectroscopy and for 3, 3-dimethyl-2-butanol additionally by the far infrared absorption method. Experimental results were discussed and compared with the results of the quantum chemical calculations performed by the density functional theory (DFT/B3LYP/6-311G**) and semi-empirical PM3 calculation methods assuming the isolated molecule approximation.
EN
Dynamics of 2,2-dimethylbutan-1-ol and 2,3-dimethylbutan-2-ol have been studied by experimental spectroscopy methods, i.e., inelastic incoherent neutron scattering and infrared absorption. Experimental results were discussed and compared with the results of the quantum chemical calculations performed by semi-empirical PM3 and the density functional theory methods assuming the isolated molecule and dimer, trimer and tetramer clusters. The density functional theory modelling of vibrational spectra of monomers and OH bonded molecular clusters allows to assign the inter- and intermolecular vibrational modes observed in density of states and absorption spectra.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.