Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Microwave Assisted Extraction (MAE) was used to obtain aqueous extracts of Baltic seaweeds. Three different temperatures: 25, 40, 60°C were examined. Algal extracts were characterized in terms of polyphenols, micro- and macroelements, lipids content and antibacterial properties. This is the first study that examines the effect of algal extract obtained by MAE in plant cultivation. The utilitarian properties were checked in the germination tests on Lepidium sativum for three dilutions of extract (0.5, 2.5 and 10%). Results showed that the content of polyphenols in extracts decreased with temperature, whereas the content of micro- and macroalements increased with temperature. The aqueous extracts did not contain fatty acids and did not show inhibitory effect on Escherichia coli and Staphylococcus aureus. Germination tests showed that plants in the experimental groups with an optimal concentration of extract had a higher height, weight, chlorophyll and micro- and macroelement content than plants in the control group. The algal extracts did not significantly influence the morphology of plants as shown in SEM pictures. Results show that algal extracts obtained by MAE have the highest potential applied in agriculture as biostimulants.
EN
The aim of the study was to perform feeding experiments on growing pigs in order to assess the impact of macroalga Enteromorpha sp. enriched with Zn(II) and Cu(II) ions via the biosorption process on the mineral composition of blood, meat, liver, feces and urine. In the control group, microelements were supplemented as inorganic salts, whereas in the experimental groups they were replaced by enriched macroalga. After 3 months of the feeding experiment, it was found that the meat was biofortified with Cr, Mn, Fe, Cu and Zn. The average content of Zn in the blood from the pigs fed with algae was higher by 9.5%, compared to that in the blood from pigs in the control group. The liver of growing pigs from the experimental group contained 16% less Cu and 18% less Zn than the liver in the control group. Growing pigs fed with macroalgae excreted in feces 27% more Zn than growing pigs in the control group, but 3.5 times less Cu. It could be concluded that the bioavailability of microelements to pigs from algae was higher than from the inorganic salts. Baltic macroalgae enriched with microelement ions could be potentially used as a biological feed additive.
EN
In this study, the effect of the increase in the initial concentration of Na(I) ions in the solution during biosorption of Cr(III) ions by two edible algae: marine macroalga - Enteromorpha prolifera and microalga - Spirulina sp. was investigated. During biosorption, essential elements are exchanged with alkali and alkaline earth metal ions (e.g. Na(I) ions), which are naturally bound with the biomass. The goal of this study was to investigate the effect of the increase in concentration of Na(I) ions on biosorption performance. The equilibrium of the process is described by Langmuir equation. It was found that with the increase in the initial concentration of NaCl (from 132 to 7331 mg L−1), there was a lower biosorption capacity of Enteromorpha prolifera (from 85.8 to 51.0 mg g−1) and Spirulina sp. (74.2 to 20.7 mg g−1) towards Cr(III) ions. It was also possible to determine the number of times the solution used in the biosorption process can be recycled and yet mantain high biosorption capacity. The determined numbers were: 16 for Enteromorpha prolifera and 19 for Spirulina sp. [...]
4
88%
EN
Spirulina has been studied due to its commercial importance as a source of essential amino acids, protein, vitamins, fatty acids etc. Most of the culture systems in use today are open ponds. The new approach proposed in this paper is to use the geothermal water as a medium for microalgae cultivation. Poland has beneficial conditions for wide geothermal use, as one of the environmentally friendly and sustainable renewable energy sources. In the planned research, geothermal water could be used to prepare microalgal culture medium, to heat greenhouses with bioreactors used for the growth of Spirulina, to dry the obtained biomass, as well as to heat the ground in foil tunnels. Using geothermal water gives the possibility to produce algae in open ponds covered with greenhouses and to cultivate plants during winter. The obtained algae can be used for the production of algal bio-products (e.g. homogenates), having the potential application in plant cultivation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.