Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This investigation enumerates the treatment of phenol contaminated synthetic wastewater by Activated Waste Tea Leaves (AWTL). Phosphoric acid was used for the modification of waste tea leaves. The effects of initial pH, biosorbent dose, contact time, and initial phenol concentration were studied on the phenol uptake from the synthetic solution. Kinetic modelling was performed using pseudo 1st and 2nd order kinetics. The Langmuir and Freundlich’s Models were employed to interpret the AWTL behaviour at various mass transfer gradients. The results show that the optimum values for pH, biosorbent dose and contact time were 2.2 g/L and 180 minutes, respectively. Pseudo 2nd order kinetic and the Langmuir’s Models best described the kinetic and equilibrium behaviours, respectively.
EN
A process model for turbulent pressurized circulating fluidized-bed coal gasifier is created using ASPEN PLUS software. Both hydrodynamic and reaction kinetics parameter are taken into account, whose expressions for fluidized bed are adopted from the literature. Various reactor models available in ASPEN PLUS with calculator as External Block are nested to solve hydrodynamics and kinetics. Multiple operational parameters for a pilot-plant circulating fluidized-bed coal gasifier are used to demonstrate the effects on coal gasification characteristics. This paper presents detailed information regarding the simulation model, including robust analysis of the effect of stoichiometric ratio, steam to coal ratio, gasification temperature and gasification agent temperature. It is observed that, with the increase in the flow rate of air, the components hydrogen, carbon monoxide, carbon dioxide and methane reduce, which causes the Lower Heating Value (LHV) of synthesis gas (Syn. Gas) to decrease by about 29.3%, while increment in the steam flow rate shows a minute increase in heating value of only 0.8%. Stoichiometric ratio has a direct relationship to carbon conversion efficiency and carbon dioxide production. Increasing the steam to coal ratio boosts the production of hydrogen and carbon monoxide, and causes a drop in both carbon dioxide concentration and the conversion efficiency of carbon. High gasifying agent temperature is desired because of high concentration of CO and H2, increasing carbon conversion and LHV. A high gasifying agent temperature is the major factor that affects the coal gasification to enhance H2 and CO production rapidly along with other gasification characteristics.
EN
The concept of different compositional biomass is introduced to enhance the binding properties and utilize the use of different seasonal biomasses. The effect of densification on the heating values of single pure and mixed compositional biomasses is observed with and without applying special type of pretreatment named as ‘Torrefaction’. The moisture contents and bulk densities were also calculated for these briquettes. The effects of average moisture contents and bulk density (which show the swelling nature) on the heating values are also observed. The experiments have been performed on the pelletizer equipment to form briquetted biomass and bomb calorimeter was used to determine the calorific values of different briquettes. Finally, the percentage decrease in the average moisture contents of different categories of torrefied briquettes from non-torrefied briquettes were also calculated and compared.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.