Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this theoretical work we analyze the total effective electric power versus base acceleration amplitude generated by the energy harvesting system with an electromagnetic transducer. We compare the results for both linear and nonlinear case. The transition from linear to nonlinear behavior of the system can be achieved by the change of device geometry. To improve the power efficiency of our device we also examine the dependence of crossover point of acceleration amplitudes where generated power in the nonlinear system starts to exceed the generated power in the linear regime. We have found that the crossover point can be moved towards relatively small base acceleration values by appropriate selection of system nonlinearity "strength".
2
Content available remote

Non-extensive equilibration in relativistic matter

100%
EN
We present a view of the non-extensive thermodynamics based on general composition rules. A formal logarithm maps these rules to the addition, which can be used to generate stationary distributions by standard techniques. We review the most commonly used rules and as an application we discuss the Tsallis-Pareto distribution of transverse momenta of energetic hadrons, which emerge from relativistic heavy-ion collisions.
EN
We study a strictly scale-invariant probabilistic N-body model with symmetric, uniform, identically distributed random variables. Correlations are induced through a transformation of a multivariate Gaussian distribution with covariance matrix decaying out from the unit diagonal, as ρ/r α for r =1, 2, ..., N-1, where r indicates displacement from the diagonal and where 0 ⩽ ρ ⩽ 1 and α ⩾ 0. We show numerically that the sum of the N dependent random variables is well modeled by a compact support q-Gaussian distribution. In the particular case of α = 0 we obtain q = (1-5/3 ρ) / (1- ρ), a result validated analytically in a recent paper by Hilhorst and Schehr. Our present results with these q-Gaussian approximants precisely mimic the behavior expected in the frame of non-extensive statistical mechanics. The fact that the N → ∞ limiting distributions are not exactly, but only approximately, q-Gaussians suggests that the present system is not exactly, but only approximately, q-independent in the sense of the q-generalized central limit theorem of Umarov, Steinberg and Tsallis. Short range interaction (α > 1) and long range interactions (α < 1) are discussed. Fitted parameters are obtained via a Method of Moments approach. Simple mechanisms which lead to the production of q-Gaussians, such as mixing, are discussed.
Open Physics
|
2009
|
vol. 7
|
issue 3
503-508
EN
The reactive-wetting process, e.g. spreading of a liquid droplet on a reactive substrate is known as a complex, non-linear process with high sensitivity to minor fluctuations. The dynamics and geometry of the interface (triple line) between the materials is supposed to shed light on the main mechanisms of the process. We recently studied a room temperature reactive-wetting system of a small (∼ 150 μm) Hg droplet that spreads on a thin (∼ 4000 Å) Ag substrate. We calculated the kinetic roughening exponents (growth and roughness), as well as the persistence exponent of points on the advancing interface. In this paper we address the question whether there exists a well-defined model to describe the interface dynamics of this system, by performing two sets of numerical simulations. The first one is a simulation of an interface propagating according to the QKPZ equation, and the second one is a landscape of an Ising chain with ferromagnetic interactions in zero temperature. We show that none of these models gives a full description of the dynamics of the experimental reactivewetting system, but each one of them has certain common growth properties with it. We conjecture that this results from a microscopic behavior different from the macroscopic one. The microscopic mechanism, reflected by the persistence exponent, resembles the Ising behavior, while in the macroscopic scale, exemplified by the growth exponent, the dynamics looks more like the QKPZ dynamics.
EN
Polyethylene Glycol has an irregular current characteristic under constant voltage and slowly varying relative humidity. The current through a thin film of Gamma-isocyanatopropyltriethoxysilane added Polyethylene glycol (PEG-Si), its hydrogenated and hydrophobically modified forms, as a function of increasing relative humidity at equal time steps is analyzed for chaoticity. We suggest that the irregular behavior of current through PEG-Si thin films as a function of increasing relative humidity could best be analyzed for chaoticity using both time series analysis and detrended uctuation analysis; the relative humidity is kept as a slowly varying parameter. The presence of more then one regime is suggested by the calculation of the maximal Lyapunov exponents. Furthermore, the maximal Lyapunov exponent in each of the regimes was positive, thus confirming the presence of low dimensional chaos. DFA also confirms the presence of at least two different regimes, in agreement with the behavior of the maximal Lyapunov exponent in the time series analysis. We also suggest that the irregular behavior of the current through PEG-Si can be reduced by hydrogenating and hydrophobically modifying PEG-Si and the improvement in stability can be confirmed by our study.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.