Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 10

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Plasma Electrolytic Oxidation of Binary Al-Sn Alloys

100%
|
|
vol. 125
|
issue 2
659-663
EN
Binary Al-Sn (1, 2, 4, 6, 8 at.% Sn) synthetic alloys were prepared under vacuum-atmosphere controlled furnace. The Al-Sn alloys were coated by plasma electrolytic oxidation technique for 120 min in aqueous electrolyte containing sodium silicate and potassium hydroxide using the same electrical parameters. The microstructure, surface roughness, phase content and chemical composition of the coatings were characterized by scanning electron microscopy, profilometry and X-ray diffractometry. The coating became porous while coating thickness and surface roughness decreased, with increasing amount of Sn content in Al-Sn alloys. The coating was not formed on the Al-Sn alloy with 8 at.% Sn. Plasma electrolytic oxidation coatings were composed of mainly mullite (3Al_2O_3 ·2SiO_2), γ-Al_2O_3 and α-Al_2O_3 up to 4 at.% Sn. The α-Al_2O_3 phase formed as precipitate in the inner region of the coating and its amount decreased with Sn amount in the Al-Sn alloys. The SnO_2 phase was only detected in the coating of Al-6Sn alloy. Scanning electron microscopy - energy dispersive X-ray spectroscopy results showed that the traces of Sn were evident in the oxide coating along with Al, O, Si, Na, and K. The increasing addition of Sn in the alloys resulted in reduction of the overall microhardness of the coating with decreasing manner from dense inner region to the surface of the coatings.
EN
The effect of surface polishing on the flexural strength of anorthite based porcelainised stoneware was studied. The flexural strength results obtained from both polished and unpolished samples were analysed by using Weibull statistical method. The state of surfaces and microstructures of polished and unpolished samples were also characterised by profilometry and scanning electron microscopy. Typical flexural strength value obtained from anorthite based stoneware body fired at 1210°C was about 100 MPa. The average flexural strength (σ_{m}) and Weibull modulus (m) values for as fired, ground, and ground and polished specimens increased sequentially with polishing degree. The surface roughness measurements and microstructure observations showed that the severity of the surface flaws declined as the polishing process proceeded. The obtainment of better strength behaviour with polishing was attributed to high crystalline to glassy phase ratio of the anorthite based porcelainised stoneware together with the formation of network structure of these anorthite crystals.
3
100%
EN
Binary synthetic aluminum alloys Al-M (M = Mg, Mn, Si) containing 4 at.% alloying elements as substrate materials were prepared under controlled vacuum/argon atmosphere. The substrates were coated by micro arc oxidation (MAO) method for 120 minutes in aqueous alkaline electrolyte using the same electrical parameters. The phase constituents, chemical composition, surface roughness and the microstructure of the coatings were characterized by XRD, profilometry and SEM-EDS. The average coating thicknesses are 127 μm, 91 μm and 78 μm on Al-4Mn, Al-4Mg and Al-4Si alloys, respectively. All MAO coatings were composed of mullite (3Al₂O₃·2SiO₂) and γ-Al₂O₃ phases. In addition to these phases, α-Al₂O₃ phase, in the form of precipitates, was detected in coatings on Al-4Mn and Al-4Mg alloys. The presence of Si, Mn and Mg was detected in the coatings, depending of the chemical content of the substrate alloys.
EN
In this study, oxide coatings were produced on pure zirconium by micro arc oxidation method in the electrolytes containing sodium silicate and different amounts of yttrium acetate tetrahydrate (1-4 g/l) for the same coating duration of 1 h. The surface roughness, microstructure, phase content and chemical composition of the coatings were characterized by using scanning electron microscopy, profilometry and X-Ray diffractometry. It was found that the surfaces of coatings on zirconium consist of monoclinic-ZrO₂, tetragonal-ZrO₂ phases. The coating thickness decreases with addition of yttrium acetate tetrahydrate while it does not change significantly with the increase of its amount. The clustered equiaxed features were formed on the surfaces of the coatings. As the amount of yttrium acetate tetrahydrate in the electrolyte solution increased, the coating/substrate interface smoothened. Two main regions of the coating, the outer dense region (I) and the porous inner region (II), became significant with addition of YAT into the electrolyte.
EN
In this study, the pack boronizing behavior of Fe-4M alloys (at.% M=W, V, Co) along with pure iron was investigated. The boronizing process was carried out at 1100°C for 3 h. The morphology, microstructure, boride layer thickness and surface properties of the formed boride layers were characterized by XRD, SEM-EDS and profilometry. The average boride layer thicknesses were 85 μm, 130 μm, 275 μm and 280 μm for Fe-4W, Fe-4V, Fe-4Co binary alloys and pure Fe, respectively. The surface roughness was not changed with the addition of alloying element into the substrate. FeB and Fe₂B phases exist on all boronized samples, but their ratio changes owing to alloying elements in the substrate. The saw-tooth morphology has transformed to a smoother boride layer with the addition of alloying elements of W and V, though Co addition was ineffective on saw tooth morphology. In addition, a transition zone under the boride layer was observed for the boronized Fe-W and Fe-V alloys. The formation of precipitates of boride of alloying elements was evident in the boride layer and in the transition zone for borided Fe-4V and Fe-4W alloys. Co has made a solid solution with iron in boride by replacing iron in the boride lattice.
6
Content available remote

Boriding of Equiatomic Fe-Mn Binary Alloy

88%
EN
Synthetic equiatomic Fe-Mn binary alloy was prepared under vacuum-argon controlled atmosphere. Fe-Mn alloy samples were boronized using the commercial Ekabor II powder at 900°C, 1000C and 1100C for 3 h. The borided samples were characterized by X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and profilometry. The boride layers were composed of FeB, MnB, MnB_2 and Fe_2B phases for the samples borided at 1000C and 1100C while the sample borided at 900C was composed of only FeB and MnB. The boride layer was well adhered to the substrate with saw-tooth like morphology however some discontinuous band of cracks were observed in the boride layer. The concentration ratio of Fe and Mn were equal along the thickness of the coating though in some areas their ratio interchanged. The boride layer thickness and surface roughness increased with boronizing temperature.
EN
In this study the Al-Cu aluminum alloy with 4 wt% Cu was prepared under controlled atmosphere and coated by microarc oxidation technique for the durations of 40, 80, and 120 min. The phase composition, surface roughness and hardness of the coating were characterized by X-ray diffraction, scanning electron microscopy, profilometry. The outer region contains larger sized porosities while fine porosities were formed in the inner dense region of the coating. The longer coating duration resulted in dense inner region with finely distributed α-Al_2O_3 precipitates. The presence of Cu in the outer region is not significant while the presence of Si in inner region was lower than in the outer region. Mullite and γ-Al_2O_3 phases were formed for 40 min and α-Al_2O_3 phase was additionally formed for 80 min and 120 min coating time. The coating thickness increased from 38 μm (40 min) to 115 μm (120 min) while the surface roughness (R_{a}) increased from 5 μm (40 min) to 9 μm (120 min).
8
Content available remote

Characterization of Ternary Mg-Sn-Mn Alloys

88%
EN
Ternary Mg-2Sn-Mn (0.5, 1, 2, and 2.5 wt% Mn) alloys were prepared under vacuum/argon atmosphere controlled furnace to investigate their microstructural and mechanical properties as a potential biodegradable implant material. As-cast alloys were heat treated at 550°C for 24 h and then at 300°C for 16 h. The alloys were characterized as-cast and after the heat treatment by optical microscopy, scanning electron microscopy, X-ray diffraction, and microhardness measurement. Mg phase is evident for both as-cast and heat-treated alloys while Mg₂Sn intermetallic phase is detected in all heat treated alloys except Mg-2Sn-0.5Mn. The dendritic microstructure changed to a microstructure with equiaxed grains after the heat treatment. The increase of Mn in ternary Mg-2Sn-Mn alloys resulted in a microstructure composed of smaller grains. Moreover, microhardness of ternary alloys slightly increased with the addition of Mn.
EN
Zirconium (Zr) is a potential implant material due to its excellent biocompatibility and low elastic modulus for biomedical applications. Its poor bioactivity, however, limits its use as biomaterials. In this study, microarc oxidation which is a plasma-electrochemical based process was applied to produce oxide coatings on pure zirconium. The coating processes were conducted in different electrolytes containing sodium silicate and varying amounts of calcium acetate tetrahydrate (CA) for 30 min to investigate the effect of the introduction of CA into the electrolyte solution on the morphology and chemical composition of the fabricated coatings. It was found that the coatings consisted of monoclinic-ZrO₂ and tetragonal-ZrO₂ phases. The amount of the tetragonal-ZrO₂ phase increased with the increasing CA concentration in the electrolyte. The coating thickness and surface roughness showed a tendency to increase with the increasing CA concentration in the electrolyte. It was observed that the vicinity of plasma channels were Zr-rich, while their surroundings were rich in Si and Ca elements. The outer region of the coating was denser compared to inner region consisting of Zr-rich porous structure.
EN
The article was originally published on October 2014. In this paper "calcium acetate monohydrate" was used in electrolyte solution, however by mistake authors had written the name of the chemical as "calcium acetate tetrahydrate". The authors apologize for their error.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.