Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Surface Carburizing by Valorization of Organic Waste

100%
EN
The organic waste recycling problem remains an important economic issue for the industry, where much research is done in this area. In this study, we are interested in the enhancement of some organic waste from slaughterhouses (blood and horns) with two objectives: recycling wastes and producing cheap cement for surface carburizing. The waste is converted into coal and added to an activator to produce a solid medium, witch can be used for surface carburizing of carbon steels. Preparation of waste and physical and chemical carbonating of blood and horns resulted in production of coal, that was used as an effective carbon source for cementation treatment. Comparison of the obtained results with other works on carburizing treatment, using industrial solid mixtures, has shown that carburizing layers in both cases are very similar. Indeed, metallographic analysis, X-ray diffraction and Vickers hardness testing of obtained layers have led to results very similar to those in literature.
2
Content available remote

Pack Siliconizing of Ti6Al4V Alloy

100%
EN
In this study, it was aimed to produce titanium silicide layer on Ti6Al4V by a simple, cheap and efficient method of pack siliconizing. Siliconizing was performed in a pack containing a mixture composed of SiO₂ powder as siliconizing source, pure Al powder as a reducer for siliconizing, NH₄Cl as an activator and Al₂O₃ powder as filler, at 1000°C for 8, 10 and 12 hours in open atmospheric furnace. Optical microscope and SEM-EDS studies indicate that the morphology of silicide layers has smooth, dense and layered nature. The presence of phases, confirmed by XRD analyses, reveals that the silicide layers formed at 1000°C are composed of TiSi₂, Ti₃Si₅, TiN, TiO₂ and SiO₂ compounds. Silicide layer thickness was increased with increasing process time and ranged from 7.5 to 9.0 μm. Hardness of silicide layers, measured by Vickers indentation, is over 2100 HV.
EN
Shot peening was applied to austenitic stainless steel 1.4541 (EN). The surface treatment was performed at various impact energies E, impact densities j and ball diameters D. This resulted in improved microhardness, which increases monotonically with the increase of E, j and 1/D. However, its changes with E and j achieve saturation at about 400 HV0.1. On the contrary, no saturation is observed in the investigated range for 1/D. In the un-shot peened 1.4541 (EN) steel, the lifetime component of low intensity was found with use of positron annihilation lifetime spectroscopy (PALS). It corresponds to positron annihilation from delocalized state of positrons in bulk. In the shot peened samples the bulk component is no longer observed. Instead, two types of defects can be identified: vacancy-like defects coupled with edge dislocations and vacancies or their small clusters (consisting 3÷5 vacancies). The results of PALS and hardness testing do not correspond very well, especially in the case of the samples shot peened with balls of varying diameters. The most probable reason for this are different depth profiles of both methods. It seems that the defects, which are responsible for the increase of static microhardness above 400 HV0.1 are located mostly below the surface layer penetrated by positrons.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.