Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Genetyczna kontrola kwitnienia roślin okrytonasiennych

100%
Kosmos
|
2003
|
vol. 52
|
issue 4
379-398
EN
Summary Plants have developed mechanisms to integrate both endogenous and environmental cues for regulation of flowering time. When environmental and physiological (e.g. photoperiod, temperature) (e.g. stage of development) conditions are appropriate plants undergo the floral transition and become reproductive. The timing of flowering initiation depends on the balanced expression of many different genes that are regulated by both endogenous and environmental factors. As a result of physiological, genetic, and molecular analysis of Arabidopsis thaliana mutants altered in flowering time the existence of a long-promotion pathway, a gibberellic-acid promotion pathway, as well as vernalization and autonomous pathway were discovered and characterized. A few dozen of genes invilved in flower induction of Arabidopsis were identified. Some of them can integrate two or three flowering pathways. Floral repression is likely to be the principal mechanism for maintaining vegetative development. Floral repressor inhibit the floral signaling pathways at various levels. Some of genes involved in vernalization and photoperiodic flower induction encode putative chromatin-associated proteins. They probably function as epigenetic silencers that repress promotion of flowering, and thereby maintain vegetative growth. The complete genome sequences of two plant species; Arabidopsis thaliana (long-day dicot) and Oryza sativa (short-day monocot) have been published recently. Since that time, comparative genomics andmolecular genetics on photoperiod-induced flowering process became possible. Using this approach some differences between long- and short-day plants were established at the molecular level.
|
|
issue 3-4
345-356
PL
Zaburzenia mechanizmów odpowiedzi i naprawy uszkodzeń DNA powodują wzrost niestabilności genomu i predysponują do nowotworów. Krytyczną rolę w utrzymaniu stabilności genomu odgrywają geny TP53 i BRCA1/2, których mutacje germinalne predysponują do nowotworów piersi i jajnika. Białka BRCA1/2 są znanymi czynnikami podatności na nowotwory piersi, które biorą udział w utrzymanie stabilności genomu poprzez zaangażowanie w procesy naprawy dwuniciowych pęknięć DNA na drodze rekombinacji homologicznej. Białko p53, produkt genu TP53, określane jako "strażnik genomu" odpowiedzialne jest za utrzymanie integralności genomu uczestnicząc w mechanizmach odpowiedzi na uszkodzenie DNA takich jak: zatrzymanie cyklu komórkowego, indukcja procesów naprawy DNA lub apoptozy w przypadku gdy uszkodzenia nie mogą być skutecznie naprawione. p53 i BRCA1/2 dzięki swoim funkcjom należą do jednych z najszerzej badanych białek ludzkich. Niemniej homologi białek BRCA1/2 są także obecne u roślin wyższych. Analizy roślinnych i zwierzęcych białek BRCA1/2 ujawniają wysoką homologię w regionach domen odpowiedzialnych za zakonserwowane funkcje tych białek. Do tej pory badania funkcji BRCA1/2 u roślin przeprowadzono wyłącznie na rzodkiewniku pospolitym (A thaliana). W genomie tej rośliny odkryto dwa geny homologiczne do BRCA2 (AtBRCA2), których produkty białkowe podobnie jak u zwierząt uczestniczą w reperacji dwuniciowych pęknięć na drodze rekombinacji homologicznej, a także odgrywają ważną rolę w rekombinacji mejotycznej. Z kolei pojedynczy homolog BRCA1 obecny u rzodkiewnika (AtBRCA1) uczestniczy w kontroli cyklu komórkowego i reperacji DNA. Mutanty roślinne w genach BRCA1/2 wykazują wrażliwość na substancje powodujące uszkodzenia DNA reperowane drogą rekombinacji homologicznej. Dotychczasowe wyniki badań wskazują na funkcjonalną konserwację genów BRCA1/2 u roślin. W odróżnieniu do genów z rodziny BRCA, homologii białka p53 nie zostały zidentyfikowane u roślin co wskazuje, że jeśli istnieje funkcjonalny roślinny odpowiednik białka p53 to nie dzieli on zakonserwowanych sekwencji ze zwierzęcymi p53.
EN
Defects in DNA damage response and repair mechanism increase genome instability and predispose to cancer. Critical roles in the maintenance of genome stability play TP53 and BRCA1/2 genes, inherited germline mutations of which predispose to breast and ovarian cancers. BRCA1/2 are a breast tumor susceptibility factors with functions in maintaining genome stability through ensuring efficient double-strand DNA break (DSB) repair by homologous recombination. p53 protein known as a "guardian of the genome" is involved in maintenance of genomic integrity by several major DNA damage response mechanisms including cell cycle arrest, DNA repair or induction of apoptosis when damage is excessive. By a role in preserving genomic integrity, BRCA1, BRCA2 and p53 belong to the most thoroughly analyzed human proteins. Surprisingly, BRCA1 as well as BRCA2 homologs are also present in higher plants. The homology between human BRCA genes and their plant homologs is mainly conserved in the region of their functional domains. To date, functions of plant BRCA-like genes have only been studied for Arabidopsis thaliana. In the Arabidopsis genome two BRCA2-like genes (AtBRCA2) were found. Their products are essential for DSB repair in somatic cells and have a role in meiotic recombination. In the absence of functional AtBRCA2, plants were sterile owing to a failure to repair meiotic DSBs and chromosomal instability. Genetic studies of one Arabidopsis BRCA1-like gene (AtBRCA1) have shown their involvement in cell-cycle control and DNA repair. Arabidopsis mutant plants defective for the AtBRCA1 or BRCA2 are sensitive to DNA cross-linking reagents, such as mitomycin C, and to DSB inducing treatments, such as exposure to the radiomimetic bleomycin. Taken together, these studies provided the first physiological evidence that BRCA genes functions were conserved in plants. In contrast to BRCA genes, homolog of the p53 protein has not yet been identified in plants, suggesting that, if a p53 plant gene exists, it might share little sequence homology with its human counterpart.
3
Content available remote

Regulacja metabolizmu giberelin u roślin

61%
PL
Gibereliny (GA), jako jedne z siedmiu klasycznych hormonów roślinnych, zajmują kluczową pozycję w regulacji wzrostu i rozwoju roślin. Wpływają one na większość procesów fizjologicznych tj. kiełkowanie nasion, wydłużanie łodyg czy indukcję kwitnienia. Z ponad stu trzydziestu różnych GA zidentyfikowanych u roślin, grzybów i bakterii, tylko nieliczne - GA1, GA3, GA4, GA5, GA6, GA7 - wykazują aktywność biologiczną, natomiast pozostałe są ich prekursorami lub produktami katabolizmu. Dzięki użyciu biochemicznych i genetycznych technik badawczych, w ciągu ostatnich kilkunastu lat poznano większość genów kodujących białka związane z biosyntezą i dezaktywacją GA, co pozwoliło na lepsze zrozumienie funkcjonowania tych fitohormonów u roślin. Większość enzymów zaangażowanych w metabolizm GA wykazuje wielofunkcyjność, dlatego mniejsza ich liczba, niż zakładano na początku, potrzebna jest do tworzenia takich struktur GA, które biorą czynny udział w kontroli wielu procesów fizjologicznych. Wiadomo również, że metabolizm GA jest ściśle regulowany zarówno przez bodźce wewnętrzne (m. in. hormony), bodźce zewnętrzne (m. in. jakość światła, fotoperiod, temperatura, stres), jak i aktualną fazę rozwoju rośliny (embriogeneza, kiełkowanie, rozwój wegetatywny i generatywny). Głównym celem niniejszej pracy jest podsumowanie obecnego stanu wiedzy na temat metabolizmu GA, a przede wszystkim próba znalezienia odpowiedzi na pytanie: jak zawartość cząsteczek hormonu w poszczególnych komórkach i tkankach jest regulowana podczas wzrostu i rozwoju roślin w różnych warunkach?
EN
Bioactive gibberellins (GA) are diterpene phytohormones that are biosynthesized through complex pathways and control different aspect of plants growth and development, such as seeds germination, stems elongation and floral induction. Among more than one hundred thirty GA identified from plants, fungi and bacteria, only small number of them - GA1, GA3, GA4, GA5, GA6, GA7 - are biologically active. Many non-bioactive GA exist in plants as precursor or deactivated metabolites. The GA metabolism pathway in plants has been studied for a long time, and large number of genes encoding the metabolism enzymes has been identified. Many of these enzymes are multifunctional and therefore fewer enzymes than might be expected are required to synthesize the various gibberellins structures. Increasing lines of evidence indicate that GA metabolism pathway is strictly regulated during plant development and in response to hormonal and environmental signals.In this review, we summarize our current understanding of the GA metabolism pathways, genes and enzymes in plant, and first of all we discuss how GA concentration is regulated during plant development under varying condition.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.