Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The oxide heterostructures composed of superconducting YBa_2Cu_3O_7 bottom layer, the overlying ferromagnetic La_{1-x}Sr_xMnO_3 film and SrTiO_3 as ultrathin (d≈5 nm) barrier were grown heteroepitaxially onto LaAlO _3 substrates by applying pulsed liquid injection metalorganic chemical vapour deposition technique. We report anomalous interface resistance increase with cooling just below superconductive transition temperature (T_c≅85 K) and enhanced suppression of supercurrent of strip-like YBa_2Cu_3O_7 film due to spin-polarized carriers injected from the ferromagnetic manganite layer.
EN
The magnetoresistance of thin polycrystalline La_{1-x}Sr_{x}MnO_{3} films deposited on lucalox substrate using metal organic chemical vapor deposition technique was investigated in pulsed magnetic fields up to 18 T in the temperature range 100-320 K. The influence of film preparation conditions, ambient temperature variation and Sr content is analyzed in order to determine the optimal conditions for the design of CMR-B-scalar magnetic field sensor based on thin manganite film, operating at room temperature.
EN
Quasi-Josephson effect produced by a coherent vortex motion in the horizontal part of the laser-performedΠ-shaped channel of a YBa_2Cu_3O_{7-δ} superconducting bridge was investigated by means of electric transport measurements. We observed that in our structures, in a limited range of temperatures and bias currents, the vortices were confined in the channel only and moved coherently with the velocity of 3×10^4 m/s. The corresponding current-voltage characteristics of the bridge exhibited Josephson-like voltage steps with the amplitude dependent on temperature, but independent of the bias current.
EN
The resistance, magnetoresistance, and resistance response under microwave irradiation (f=10 and 35 GHz) were measured for epitaxial and polycrystalline La_{0.67}Ca_{0.33}MnO_3 and La_{0.67}Sr_{0.33}MnO_3 thin films in the temperature range 78÷300 K. The microwave induced resistance increase observed for the epitaxial films in a narrow temperature range below the ferromagnetic to paramagnetic transition temperature T_c certifies coexistence of low resistance (ferromagnetic) and high resistance (paramagnetic) regions in the manganites. Resistance of polycrystalline films decreased under microwave irradiation in a wide temperature range below T_c. The effect was explained in terms of microwave assisted hopping of carriers in high resistance regions formed at grain boundaries of the polycrystalline films.
5
Content available remote

Fast Electrical Switching of Thin Manganite Films

64%
EN
The effects of strong pulsed electric field on the electrical properties of thin epitaxial La_{0.7}Sr_{0.3}MnO_3 films were investigated. The fast electrical switching from high resistance off-state to low resistance on-state was obtained at current densities higher than 10^6 A/cm^2. This current was able to induce an irreversible damage of the sample in the regions at the edges of the electrodes of the film. It was demonstrated that thermal effects are responsible for appearance of delay time and asymmetrical shape of current channel in on-state, however, the fast switching from off- to on-state is a result of electronic effects appearing when critical power is reached in the film.
EN
A current-self-induced magnetic field H_{j}, such that H_{c1} < H_{j} < H_{c2} at T < T_{c}, penetrates a thin-film, type-II superconductor forming the Abrikosov magnetic vortex-antivortex pairs in the film's areas of weakest superconductivity. Our atomic force microscopy and scanning tunneling microscopy images confirm that in 50 μm wide, 100 μm long and 0.3 μm thick YBa_2Cu_3O_{7 - x} superconducting devices magnetic flux penetrates first into a 5 μm wide, Π-shaped and partially deoxygenated (x ≈ 0.2) channel for easy vortex motion. When the Lorentz force overcomes pinning force in the channel, the flux starts to move and its drift dissipates energy inducing dc voltage. This work reports on the density of coherently moving vortices along the channel vs. temperature in range from 0.93T_{c} to 0.97T_{c}. Our simulations show that the vortex density vs. temperature dependence extracted from I-V measurements of our devices follows the temperature dependence of magnetic field penetration depth and the coherence length of the superconductor.
EN
A mixed state in dc-biased thin films of II-type superconductors realizes the Abrikosov magnetic vortices/antivortices, which are the result of the current-self magnetic field penetration into the film at temperatures lower than its critical temperature T_{c}. A nucleation of vortices/antivortices at the superconducting film's edges, their motion perpendicular to the direction of biasing current, and the annihilation in the film's center originates from a current dissipation in the superconductor and expresses itself in experiments as a dc voltage. This work reports on the results of simulation of current density in a 50 μm wide, 100 μm long, and 0.3 μm thick YBa_2Cu_3O_{7 - x} microbridges containing Π-shaped 5 μm wide single channel of easy vortex motion fabricated by means of laser-writing technique. Analyzing a two-dimensional-net of resistors and assuming that, due to the Meissner-Ochsenfeld effect, the magnetic flux penetration into superconducting film is nonlinear, we demonstrate that presence of a Π-shaped channel causes a non-homogeneous distribution of current in the microbridge.
EN
The design, technology and main characteristics of Ag contacts as well as "loop effect" peculiarities of colossal magnetoresistance B-scalar high magnetic field sensor based on La_{1-x}(Ca)Sr_x MnO_3 films used for measuring high magnetic field pulses are presented.
EN
The magnetoresistance anisotropy of ultrathin La_{0.83}Sr_{0.17}Mn O_3 films deposited on NdGaO_3 substrate by metalorganic chemical vapour deposition technique was investigated. The electric-field-induced resistance change was studied up to electric fields of 10 kV/cm using ns duration electrical pulses. It was found that in ultrathin (< 10 nm) and thin (< 50 nm) films the origin of electric-field-induced resistance change is thermal. However, the films with thicknesses of about 20 nm, exhibit negative electric-field-induced resistance change, having a pure electronic nature. This effect is explained in terms of two-layer systems with imperfections located at the interface between the layers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.