Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We present results of extensive measurements of magnetic susceptibility, electrical resistance, specific heat and thermoelectric power of two series of solid solutions GdNi_{x}Ga_{4-x} and GdCu_{x}Ga_{4-x}, for ranges of doping x from 0.6 to 1 and from 1 to 1.5, respectively. All studied phases display the Curie-Weiss behaviour of magnetic susceptibility and antiferromagnetic ordering at temperatures below 23 K. Substitution of gallium with transition metal atoms has strong influence on Néel temperatures of all studied phases, shifting them by few K, depending on x. Metamagnetic-like anomalies are observed for some compositions. Behaviour of the electrical resistivity reveals metallic nature of all samples. Their magnetic ordering is reflected in low-temperature anomalies of the resistivity and the heat capacity.
EN
The influence of Ni doping on the normal-state pseudogap in La_{1.85}Sr_{0.15}CuO_4 is studied by dc magnetic susceptibility measurements, accompanied by X-ray powder diffraction analysis and resistivity measurements. The measurements are carried out on the polycrystalline La_{1.85}Sr_{0.15}Cu_{1-y}Ni_yO_4 samples in the whole doping range from y=0.01 up to y=1. The temperature of pseudogap opening is found to decrease above y=0.05 and to vanish when y exceeds 0.07. At small Ni content, up to y=0.07, the magnetic moment induced by Ni is constant and equal to 0.7 μ_{B} per Ni, while for larger y it increases abruptly and reaches about 1.6 μ_{B} per Ni ion for y = 0.5. The dependence of the normal-state resistivity on temperature evolves smoothly from the metallic-like for small y, to the variable range hopping, described by the Mott law with the exponent 1/4, for samples with y>0.15.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.