Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The results on the study of grain boundary effects and influence of film deposition conditions on the magnetoresistance and its anisotropy in polycrystalline La_{0.83}Sr_{0.17}MnO_3 films are presented. The magnetoresistance was measured in high pulsed magnetic fields up to 25 T (pulse duration ≈ 0.6 ms) in the temperature range of 120-300 K. A modified Mott hopping model was applied to describe the main behavior of high-field magnetoresistance for both ferromagnetic and paramagnetic phases of the polycrystalline films by taking into account the demagnetization field of the films measured in low magnetic fields perpendicular to film plane. It was also found that to obtain the higher magnetoresistance saturation field at room temperature it is necessary to use the films with smaller crystallites (D ≈ 100 nm). Such films could be used for design of megagauss pulsed magnetic field sensors.
2
Content available remote

Fast Electrical Switching of Thin Manganite Films

64%
EN
The effects of strong pulsed electric field on the electrical properties of thin epitaxial La_{0.7}Sr_{0.3}MnO_3 films were investigated. The fast electrical switching from high resistance off-state to low resistance on-state was obtained at current densities higher than 10^6 A/cm^2. This current was able to induce an irreversible damage of the sample in the regions at the edges of the electrodes of the film. It was demonstrated that thermal effects are responsible for appearance of delay time and asymmetrical shape of current channel in on-state, however, the fast switching from off- to on-state is a result of electronic effects appearing when critical power is reached in the film.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.