Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2006
|
vol. 4
|
issue 1
20-29
EN
The influence of iodine on the electrical properties of sandwich structures of magnesium phthalocyanine (Mg Pc) thin films with gold and aluminium electrodes has been investigated. The various electrical properties and different electrical parameters of the iodine-doped Mg Pc thin film devices have been estimated and compared with the values of normal Mg Pc devices from the analysis of the current-voltage characteristics. Generally samples showed an asymmetric conductivity both under forward and reverse bias. From our study we found that iodine doped Mg Pc films showed an enhanced electrical conductivity of nearly ten times that of typical Mg Pc. At low voltages the films showed an ohmic conduction with a hole concentration of P0 = 6.34 × 1018 m−3 and hole mobility μ = 9.16 × 10−5 m 2 V−1 s−1, whereas at higher voltage levels the conduction is dominated by space charged limited conduction (SCLC) with a discrete trapping level of 1.33 × 1022 m−3 at 0.63 eV above the valance band edge. The ratio of the free charges to trapped charges (trapping factor) for the doped samples was found to be 1.07 × 10−7. Furthermore the reverse conduction mechanisms have also been investigated. From the current limitations in the reverse condition a strong rectifying behaviour was evident which was attributed to Poole-Frankel emission with a field-lowering coefficient of value 2.24 × 10−5 eV m1/2 V−1/2.
Open Physics
|
2005
|
vol. 3
|
issue 1
8-14
EN
Thin films of mixed of Copper Phthalocyanine (CuPc) and Nickel Phthalocyanine (NiPc) are deposited onto a pure glass substrate by a simultaneous thermal evaporation technique at room temperature. The material D.C. electrical conductivity of films at room temperature and also films annealed at 523 K has been investigated. The optical absorption and band gaps of the films are also measured. The results show that the electrical resistance is lower for the mixed films compared with the pure samples and also the optical band gap decreases for the mixed samples compared to the pure samples.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.