Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Strength and permeability of sand-bentonite mixtures are of main concern, particularly in liner design. This study presents the results obtained from an experimental investigation of strength and permittivity of compacted sand-bentonite mixtures in the presence of water-reducing admixture of lignosulfonate. For this, sand-bentonite mixtures containing 4, 8, 12, 16% of bentonite were subjected to standard Proctor tests, to obtain the optimum water content and maximum void ratio of the mixtures. Similar specimens were prepared by partially replacing 0.5, 1 and 2% of water in the mixture with lignosulfonate. Additional specimens containing 16% of bentonite were prepared with 5% deviation towards the wet and dry sides of optimum water content, which was partially replaced with lignosulfonate for evaluation of the effects of deviation from optimum moisture content during densification. It was observed that partial replacement of water with lignosulfonate slightly increases the strength and decreases the permittivity, and that this effect was more pronounced as the replacement level was increased. Additionally, test results reveal that lignosulfonate replacement was more effective on the dry side of optimum water content.
EN
It is a well-identified fact that more elaborate laboratory studies should be carried out for evaluation of dynamic properties of different types of soils. Regardless of the mechanisms affecting the mechanical behaviour of the soils, past studies reveal that existence of fiber positively affects the strength of either cohesive or non-cohesive soils. A short literature survey provides numerous studies on the stress-strain behaviour of fine/coarse soils, reinforced by polypropylene fiber. On the other hand, studies concerning fiber reinforced soils subjected to dynamic loading are relatively rare. Therefore, in this research it was intended to investigate the effects of polypropylene fiber inclusion on the dynamic behavior of a clayey sand soil, within an experimental framework. In this scope, a number of cyclic triaxial compression tests were conducted to assess the effect of fiber presence. The effects of fiber length and content were experimentally evaluated. Hence, the variation of shear modulus ratio and damping ratio values by shear deformation was plotted to observe the effects of fiber length and inclusion level as well. The results are presented along with detailed evaluations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.