Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Ten novel and stable free radicals of nitronyl-, imino-nitroxide and hydrazyl type compounds were synthesized and their physico-chemical properties investigated. UV-Vis and ESR spectroscopic data, as well as the lipophilicities and specific hydrophobic areas of the compounds are compiled. The reaction of these radical compounds with nitric oxide and nitrogen dioxide was also investigated. The radicals synthesized, show selectivity in their reaction with these nitric oxides, depending on their structure (nitronyl-nitroxide radicals react with NO, while hydrazyl radicals react with NO2). The processes are easily monitored by UV-Vis or ESR spectroscopy.
EN
4-Chloro-7-nitrobenzofurazan reacts by nucleophilic substitution with phenoxide anions derived from estriol (2c), ethynylestradiol (2d), phenol (3e), guaiacol (3f), 2,6-dimethoxyphenol (3g), eugenol (3h), isoeugenol (3i), the cytostatic Etoposide (4), and Reichardt’s betaine (5) in the presence of crown ethers affording the corresponding 4-aryloxy-7-nitrobenzofurazan derivatives 6c, 6d, 7e-7i, 8, and 9. The structure of these compounds was confirmed by NMR spectra. Hydrophobicity/hydrophilicity parameters were investigated by reverse phase thin-layer chromatography.
EN
Starting from N-hydroxyphthalimide (5) and 1,3-dibromopropane (6) we obtained 1,3-bis(phthalimidooxy)propane (7) which led to 1,3-bis(aminooxy)propane dihydrochloride (8). From its reaction with picryl chloride or 4-cyano-2,6-dinitrochlorobenzene, the two title compounds (4b, 4a) were obtained. 1H-NMR and 13C-NMR spectra are presented. For comparison with the analogous N-methoxy-2,6-dinitro-4-R-anilines 1a, 1b (R=CN or R=NO2), wer report the hydrophobic characteristics (by RPTLC), electronic spectra for the neutral compounds and their anions, pKa values, and the behavior towards oxidizers (DPPH, PbO2, Pb(CH3COO)4, KMnO4 and Ag2O); DPPH converts compounds 1a, 1b and 4a, 4b into betainic structures 2a, 2b respectively.
EN
Starting from N-hydroxyphthalimide 1 and the reactive fluoro- or chloro-nitroaryl derivatives 2, 3 and 4a-e (2-chloro-3,5-dinitropyridine; 3, NBD-chloride; 4a, 1-fluoro-2,4-dinitrobenzene; 4b, picryl chloride; 4c, 4-chloro-3,5-dinitrobenzotrifluoride; 4d, 2-chloro-3,5- dinitrobenzotrifluoride; 4e, 4-chloro-3,5-dinitrobenzoic acid) the corresponding N-(2-nitroaryloxy)-phthalimide derivatives 5a-e, or 6 and 7 were obtained and characterized by IR, UV-Vis 1H-NMR and 13C-NMR spectroscopy. The TLC behavior and the hydrophobicity of these derivatives have been experimentally evaluated by RM0 parameters (using RP-TLC). The experimental RM0 parameters were compared with the calculated partition coefficient, log P. A QSPR study was also performed to establish possible correlations between the structure and physical properties (λmax and RM0) of compounds 5a-e, 6, and 7. [...]
EN
An interesting observation was made when studying the SNAr reaction between several 4-aryloxy-7-nitrobenzofurazans (2) and several amino acids leading to the apparition of detectable fluorescence from the substitution products3. Acidic amino acids reacted very slowly=while basic amino acids react fastest with2 having an unsubstituted phenyl or a 4-formyl-phenyl Ar group. Amongst neutral amino acids, proline reacts fastest at room temperature after 100 min. With2 having a methoxy-subtituted Ar group.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.