Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Materials for dental applications, i.e., white mineral trioxide aggregate (WMTA) and partial stabilized cements (PSC) were obtained using the sol-gel method. The presence of ZnO or/and CaF2 additions in the starting mixture induced changes in the composition, morphology and grindability of PSCs as compared with WMTA. The presence of foreign elements (Zn or F) in the crystalline lattice of mineralogical phases, increased their grindability. Thermal analysis (TG&DTA) was used to assess the kinetics of hydration process in binding systems based on WMTA/PSCs. The presence of foreign elements in PSCs systems increases the reactivity vs. water of these materials and consequently, the compressive strength developed after 28 days of hardening at 37°C are higher as compared with WMTA. The in vitro bioevaluation results (trypan blue staining, eukaryotic cells cycle assay by flowcytometry) accounted for a high biocompatibilty of the obtained materials demonstrating their potential use for biomedical applications. [...]
EN
The aim of this work was to increase our understanding of collagen (COLL)/ hydroxyapatite (HA) composite materials; more specifically, we focused on the study of the influence of the precursorconcentrations over the final content of deposited HA. We found that the increase of the precursor concentrations led to better mineralization (on the basis of the content of deposited mineral phase). Regardless of the precursor concentrations, the content of the deposited amount was found to increase with the increase of the number of deposited layers. Quantification of the mineral phase amount was achieved by gravimetric determination. Based on the determined deposition equation the number of layers can be easily determined in order to obtain composite materials with desired content of mineral phase.
EN
The purpose of the present study is the preparation and characterization of collagen/antitumor drug hybrids as drug delivery systems. Materials used for obtaining collagen-based drug delivery systems were collagen type I (Coll) as matrix and irinotecan (I) as hydrophilic active substances. After incorporation of I into Coll in differing ratios, the obtained hybrid materials (Coll/I) could be used according to our results as potential drug delivery systems in medicine for the topical (local) treatment of cancerous tissues or bone. The released amount of I varies with amount of Coll from hybrid materials: the higher, the slower the release amount of irinotecan transferred is in the first 6 hours. The in vitro citotoxicity demonstrates an antitumoral activity of the obtained hybrid materials and their potential use for biomedical applications as drug delivery systems in tumoral treatments. [...]
4
Content available remote

Mimicking the morphology of long bone

76%
EN
The aim of this work was to mimic the stratified structure of the median region of long bones. Starting from this desideratum, more COLL/HA composite materials with different morphology were synthesized and characterized, each of these materials mimicking one layer of long bone (endo- and periosteum, compact and cancellous bony tissue). Stratified bone grafts were obtained by assembling these layers; the obtained grafts were similar to the median region of long bones. Even though, natural bones have a more complex microstructure, this is a pioneering work since for the first time a stratified COLL/HA composite material similar to bone was produced. [...]
EN
We successfully synthesized tin dioxide nanoparticles with polyhedral morphology via an ethylene glycol assisted sol-gel approach. The structural characteristics of three tin dioxide samples were investigated after being thermally treated at 400°C, 600°C and 800°C. X-ray diffraction (XRD) patterns clearly show the formation of single phase tin dioxide nanoparticles, with crystallite size of 6–20 nm, in good correlation with Fourier transform infrared (FTIR) spectra. Transmission electron microscopy (TEM) analysis confirms the formation of 6nm polyhedral nanoparticles for the 400°C sample. Ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectra suggest a high concentration of oxygen vacancies. The oxygen vacancy concentration increases with temperature, due to the combined action of the formation of VO and the energetic O compensation. X-ray photoelectron spectroscopy (XPS) analysis also confirms the formation of single phase tin dioxide and the presence of oxygen vacancies in good agreement with UV-VIS and PL data.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.