Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A single crystal of (Pb,Cd)Te solid solution with Cd content equal to 5% was grown by self-selecting vapour growth technique and characterized by powder X-ray diffraction using the X'Pert PANalytical diffractometer and Cu K_{α₁} radiation. The X-ray diffraction pattern refinement demonstrated the fcc structure of the rock-salt type of investigated sample, no precipitates or other crystal phases were detected. The sample chemical composition was determined on the basis of measured lattice parameter value. Next, the Young modulus and microhardness were determined by the nanoindentation for carefully prepared, (001), (011) and (111)-oriented single crystal plates. The slight anisotropy of two parameters mentioned above has been found and compared with available literature data.
EN
The aim of this study was to compare the hardness and elastic modulus of orthodontic adhesives cured with different light-curing units, based on light-emitting diodes. Standardized samples of orthodontic adhesives, Transbond™ XT, Opal® Bond™ and Light Bond™ were prepared in cylinder blocks and cured for three seconds with Valo Ortho LED (Ultradent Products, South Jordan, Utah) and Valo LED High-Power Mode. After grinding and polishing, specimens were stored in distilled water at 37°C for one day. Specimens were investigated using nanoindenter. Employment of Valo Ortho unit has resulted in significantly higher elastic modules for Transbond™ XT (p=0.041). The highest nanohardness and elastic modules were measured for Transbond™ XT cured with Valo Ortho (9.47 GPa; 81.85 GPa, respectively) and lowest for Opal® Bond™ for both Valo Ortho (0.44 GPa; 14.52 GPa, respectively) and Valo High-Power groups (0.44 GPa; 11.84 GPa, respectively).
EN
Light-weighting is a new scope in the automotive industry to accommodate new emission regulations. The parts produced with conventional metallic materials are replaced with parts produced by using light weight or high strength materials, to obtain light weighted equivalents of the same strength. Foam core sandwich structures, high strength steels, composite materials are the most used alternative materials. Syntactic foams that show outstanding performance in case of high-speed collisions have an excellent utility as energy absorbers in vehicle crash boxes. Syntactic foams are modeled in crash boxes at various filling rates and filling patterns in the context of this study. As results of the FEM analyses, it is observed that syntactic foams have excellent crash performance, as well as weight-reducing effect in vehicle crash boxes.
EN
The main goal of nanoindentation tests is to obtain elastic modulus and hardness of the specimen material from load-displacement measurements. With this study, it was aimed to establish a quantitative relationship between the nanomechanical properties of commonly used dental cements in comparison to a newly developed crown cement and to predict its performance potential. Nanomechanical properties of polycarboxylate cement (PCC), glass-ionomer cement (GIC), dual-cure self-adhesive cement (SAC) and a newly developed glass-carbomer cement (GCC) were investigated by nanoindentation tests. All samples were fabricated according to their respective manufacturer's instructions. Available damage on the surface due to manipulation was removed by grinding with 1200, 2400 and 4000 grit sandpaper, and then polishing on 6, 3, and 1 μm diamond-lap-wheel was performed. Nano-mechanical measurements were done using nanoindenter machine with resolution less than 1 nN and displacement resolution of 0.04 nm. Berkovich diamond indenter tip was used for the nanoindentation tests. For each indentation, a set of nanoindentation tests at least on 6 different locations per specimen surface were performed to obtain more representative mean results. Indentation test load-displacement curves were analysed using Oliver-Pharr method, and one-way ANOVA or Kruskal-Wallis test, following Kolmogorov-Smirnov and Shapiro-Wilk, was used to compare the results. Nanohardness (H_{nano}) values were 0.52± 0.25, 0.45± 0.18, 1.03± 0.82 and 0.43± 0.18 GPa for GIC, GCC, PCC, and SAC, respectively. Reduced elastic modulus (E_{r}) values were 9.51± 6.17, 11.77± 5.04, 27.37± 20.61, 10.33± 5.08 GPa for GIC, GCC, PCC, and SAC, respectively. There was no statistical difference between the tested materials. PCC was the hardest, and GIC was the least hard material, whereas the newly developed GCC was the second, in terms of H_{nano}, before SAC. PCC also had the highest E_{r} mean, compared to the other dental crown cements, suggesting lower elastic properties. SAC was more elastic than GCC and less elastic than GIC. GCC had the second highest E_{r}, standing closer to SAC and GIC. Within the limitations of the current study, it can be concluded that the newly developed glass-carbomer cement is comparable to the other tested commonly used dental crown cements, regarding H_{nano} and E_{r}.
EN
This paper reports an experimental study on the design of self-compacting lightweight concrete using acidic pumice with different powder materials. For this aim, nine self-compacting lightweight concretes were designed with inclusion of two different fine aggregates and different powder materials. This way, two groups of concrete were designed. First group was composed of single type of aggregate which is acidic pumice from Bitlis Region with barite powder, fly ash powder and pumice powder inclusion, while the second group was generated with river sand as a fine aggregate and acidic pumice from Bitlis Region, as a coarse aggregate with the same powder addition. In the design process, slump-flow, V-funnel and L-box tests were applied to determine the fresh properties of self-compacting lightweight concrete. After the design, test of compressive strength, which is one of the most important parameters of concrete, was applied to all self-compacting lightweight concretes in early age. Moreover, ultrasound pulse velocity test was also performed on all concrete series at the same ages.
EN
This paper reports results of an experimental study of the strength properties of fibre reinforced self-compacting concrete (FRSCC). For this aim, a control self-compacting concrete and 24 FRSCCs were designed, applying fresh self-compacting concrete criteria tests. In the design of FRSCC, four steel and two polypropylene synthetic fibres of different lengths and aspect ratios were used. These fibres were used alone and in combinations with two and four of these fibres. In this way, not only the effect of single fibre and the synergy effect of hybrid fibres, but also the size and concentration effect of fibres, which had different ratios in total fibre volume, were investigated. In the design process, Portland cement and fly ash were used as the binder and the powder material. The compressive and flexural-tensile strength tests were employed at the age of 3, 7, 28, 56 and 90 curing days, to determine the strength properties of FRSCCs. Moreover, ultrasound pulse velocity test was also performed on all concrete series at the same ages.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.