Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The purpose of the study was to establish a dynamics model and a three-dimensional (3D) finite element model to analyze loading characteristics of femoral neck during walking, squat, single-leg standing, and forward and lateral lunges. One male volunteer performed three trials of the five movements. The 3D kinematic data were captured and imported into the LifeMOD to establish a musculoskeletal dynamics model to obtain joint reaction and muscle forces of iliacus, gluteus medius, gluteus maximus, psoas major and adductor magnus. The loading data LfeMOD were imported and transformed into a hip finite-element model. The results of the finite element femur model showed that stress was localized along the compression arc and the tension arc. In addition, the trabecular bone and tension lines of the Ward's triangle also demonstrated high stress. The compact bone received the greatest peak stress in the forward lunge and the least stress in the squat. However, the spongy bone in the femoral neck region had the greatest stress during the walk and the least stress in the squat. The results from this study indicate that the forward lunge may be an effective method to prevent femoral neck fractures. Walking is another effective and simple method that may improve bone mass of the Ward's triangle and prevent osteoporosis and femoral neck fracture.
EN
The purpose of this study was to establish a multi-segment dynamic model in the LifeMOD to examine kinematics of the center of mass and foot, and muscle forces of selected upper extremity muslces during a double-leg circle (DLC) movement on pommel horse in gymnastics and compared with three-dimensional kinematics of the movement and surface electromyographic (sEMG) activity of the muscles. The DLC movement of one elite male gymnast was collected. The three-dimensional (3D) data was imported in the Lifemod to create a full-body human model. A 16-Channel surface electromyography system was used to collect sEMG signals of middle deltoid, biceps brachii, triceps brachii, latissimusdorsi, and pectoralis major. The 3D center of mass and foot displacement showed a good match with the computer simulated results. The muscle force estimations from the model during the four DLC phases were also generally supported by the integrated sEMG results, suggesting that the model was valid. A potential application of this model is to help identify shortcomings of athletes and help establish appropriate training plans errors in the DLC technique during training.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.