Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Back swing connections during gymnastics acrobatic series considerably influence technical performance and difficulties, particularly in the back somersault. The aim of this study was to compare the take-off’s kinetic and kinematic variables between two acrobatic series leading to perform the backward stretched somersault (also called salto): round-off, flic-flac to stretched salto versus round-off, tempo-salto to stretched salto. Five high level male gymnasts (age 23.17 ± 1.61 yrs; body height 1.65 ± 0.05 m; body mass 56.80 ± 7.66 kg) took part in this investigation. A force plate synchronized with a two dimensional movement analysis system was used to collect kinetic and kinematic data. Statistical analysis via the non-parametric Wilcoxon Rank-sum test showed significant differences between the take-offs’ variables. The backswing connections were different in the take-off angle, linear momentum, vertical velocity and horizontal and vertical displacements. In conclusion, considering that the higher elevation of the centre of mass in the flight phase would allow best performance and lower the risk of falls, particularly when combined to a great angular momentum, this study demonstrated that the optimal connection series was round-off, flic-flac to stretched salto which enabled the best height in the somersault. Analysis of the results suggests that both connections facilitate the performance of single and double (or triple) backward somersaults with or without rotations around the longitudinal axis. Gymnasts could perform these later while gaining height if they chose the round-off, flic-flac technique or gaining some backward displacement if they choose the round-off, salto tempo.
EN
Arms swing during standing back somersaults relates to three different “gymnastics schools”, each is considered “optimal” by its adepts. In the three cases, technical performance, elevation and safety differ. Therefore, the aim of this study was to compare the mechanical variables of three different arms swing techniques in the performance of a standing back tucked somersault. Five high-level male gymnasts (age: 23.17±1.61 yrs; body height: 1.65±0.05 m; body mass: 56.80±7.66 kg) randomly performed standing somersaults under three conditions, each following a different arms’ swing technical angle (270°, 180° and 90°). A force plate synchronized with a three dimensional movement analysis system was used to collect kinetic and kinematic data. Significant differences were observed between somersaults’ performance. The back somersault performed with 270° arms swing showed the best vertical displacement (up to 13.73%), while the back somersaults performed with 180° arms swing showed a decrease in power (up to 22.20%). The back somersault with 90° arms swing showed the highest force (up to 19.46%). Considering that the higher elevation of the centre of mass during the flight phase would allow best performance and lower the risk of falls, this study demonstrated that optimal arms’ swing technique prior to back tucked somersault was 270°.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.