Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
An attempt to evaluate mechanical properties changes (superelastic phenomena) in the shape memory NiTi alloy (austenitic form) due to ion implantation (N^{+}, fluences of 1 × 10^{17} and 4 × 10^{18} cm^{-2}) has been made. We applied the differential scanning calorimetry technique and spherical indentation (micro- and nanoindentation scale) test to study superelastic effect. The results of investigations of selected functional properties, i.e. characteristic temperatures, total and recovered penetration depth on the implanted and non-implanted NiTi samples are presented.
EN
The main goal of the proposed paper is to present the results of the nitrogen ion implantation effects on mechanical and corrosion properties of NiTi shape memory alloy. Local pseudoelasticity phenomena of NiTi were determined using the ultra-low load applied system. The load-penetration depth curves show that lower nitrogen fluence improves mechanical properties in the near surface layer but higher ion fluence leads to degradation of pseudoelasticity properties. Corrosion resistance of NiTi in the Ringer solution was evaluated by means of electrochemical methods. The results of potentiodynamic measurements in the anodic range for implanted NiTi indicate a decrease of passive current density range in comparison with non-treated NiTi, without any signs related to Ni release. The results of impedance measurements recorded at the corrosion potential show a capacitive behaviour for all samples without clear predominance of one of them. It can be explained by the fact that this result concerns the first stage of corrosion exposition. It is shown that nitrogen ion implantation leads to formation of modified surface of improved physicochemical properties.
EN
The results of X-ray diffraction studies on structural changes in the near-surface layers in the NiTi alloy caused by nitrogen-ion implantation with the energy E = 50 keV and the fluence D = 10^{18} cm^{-2} are presented. X-ray diffractometry, using the Philips diffractometer type X'Pert in the Bragg-Brentano geometry, was used to identify the phase composition of NiTi alloy. For layer by layer analysis of structural changes in the near-surface layers, the D8 Discover Bruker diffractometer with polycapilar beam optics was used. The ion-implanted NiTi alloy in the near-surface layer exhibits five phases: the dominating austenite phase, two martensitic phases and a small amount of the Ni_4Ti_3 and NTi phases. Along with the decreasing thickness of the near-surface layer investigated in material an increasing fraction of the Ni_4Ti_3 and NTi phases was observed. With the thickness of this layer about 340 nm, besides still existing the austenite, Ni_4Ti_3 and NTi phases, only one martensitic phase is present in the alloy. Further decrease of the thickness of the near-surface layer to about 170 nm leads to the increasing fraction of the Ni_4Ti_3 and NTi phases.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.