Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Controlling swimming speed is an important factor as far as accomplishing swimming training tasks is concerned. The aim of this study was to determine the importance of visual information about control of swimming speed in threshold training for swimmers. Six swimmers took part in this experiment. The study consisted of two exercise tests in which the participants swam 10 x 100m. Individually designated task time corresponded to intensity of 95-100% of anaerobic threshold (AnT) intensity. AnT was determined in a progressive test prior to the experiment. In the first exercise test participants did not receive information regarding their swimming speed. In the second test visual information regarding their swimming speed was transmitted in real time using the Swimming Pace Control System device. The effect of visual control of swimming speed in threshold training for swimmers was determined by measuring the time needed to complete the test distances, heart rate and lactate concentration. Visual information used in swimming speed control in real-time statistically significantly reduces the differences between the assumed and actual time needed to complete the test distance (p=0.057). Visual control of swimming speed resulted in an appropriate level achievement of intensity for threshold training, which was measured by swimming time (inaccuracy 6.97±1.38 s), heart rate ( 162.7±15.9 beat/min), and lactate concentration ( 4.70±1.78mmol/l). Comparing the increase in lactate concentration and exercise test with visual information, statistically significant differences are not observed (p=0.710; p=0.947). However, among 33.33% of the subjects, lactate concentration after training without visual information did not meet the standards (4 to 5 mmol/l) of threshold training (8.85 mmol/l and 14.57 mmol/l). Additionally, value of standard deviations of lactate concentration after threshold training with visual information amounted to 37.87% mean of lactate concentration, and in the condition without information 84.00% mean of lactate concentration. The results indicate the need to use concurrent visual information provided in real-time allowing you to control the swimming speed in swimming training.
EN
The efficiency of energy conversion of aerobic metabolism to external work is of great importance to sports exercise. Despite this fact, gross efficiency (GE) is not commonly used as a parameter in the assessment of cyclists’ exercise ability. It is also known that road cyclists traverse most of their route at a work intensity below the anaerobic threshold (AT). We tried to examine the relationship between the standard aerobic parameters used for defining the endurance of cyclists and GE, measured just below the anaerobic threshold. Fifty cyclists were subjected to a progressive test. Work done and the basic respiratory and circulatory parameters were measured. Gross efficiency was calculated at work intensity just below AT. We observed a very low correlation (R = –0.137) between GE (24.9 ±2.06) and maximal oxygen uptake (VO2max) – 63.8 ±6,27 ml × kg–1 × min–1. The strongest correlation (R = –0.258) was recorded between GE and the percentage of maximal oxygen consumption (58.9 ±7.0%) for the load prior to the occurrence of the anaerobic threshold. The weak, but existing correlation between GE and selected respiratory and circulatory parameters may suggest that GE provides unique and independent information about the examined athletes.
EN
Purpose. The aim of the study was to determine the changes in maximal anaerobic power and work output observed in a 15-second maximal power ergometer test following a four to five week-long transition period in a group of young sprinters. Methods. Sixteen young sprinters (six women and ten men) were asked to perform a 15-second maximal power output cycle ergometer test (a modified variant of the standard Wingate test). Blood samples were obtained from subjects before the test and three minutes after exercise in order to measure lactate (LA), hydrogen ion (H+) and bicarbonate (HCO3 -) concentrations. The tests were conducted twice, at the beginning (T1) and the end (T2) of the transition period for each of the sprinters. Results. Changes in the body weight and the body fat content of the sprinters following the transition period were non-significant. When comparing pre- to post-transition period performance, there were no significant changes in total work output (Wtot) and maximal power (Pmax), however these parameters’ ratios to body weight were found to slightly increase in the group of males. A significant increase in the number of total pedal revolutions in males was also observed. There were no changes in the time of maintaining maximal power (Tm) and time to reach maximal power output (Tr) in both groups. No statistically significant changes in the values of the selected parameters LA, H+, HCO3 - and also the ratio of H+ to Wtot were noted between the tests performed at T1 and T2. Conclusion. The four to five week-long transition period did not diminish power and work performance in 15-second maximal power output test in young sprint athletes. Moreover, some of the performance parameters increased in the group of male sprinters.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.