Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 21

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
Various species and cultivars of Ericaceae family were checked for the presence of long-chain polyprenols in their leaves. In the genus Rhododendron no polyprenols were found in the ever-green species, while they were present in the deciduous type. The polyprenols were of chain-length of 14-20 isoprene residues and they occurred in the form of acetic acid esters. The polyprenol accumulation is discussed with respect to senescence of leaves.
12
62%
EN
A new methodology for prenylation of thiol compounds has been developed. The approach is based on the use of prenyl sulfates as new reagents for S-prenylation of benzenethiol and cysteamine in aqueous systems. The C10-prenols geraniol and nerol that differ in the configuration (E or Z, correspondingly) of the α-isoprene unit were efficiently O-sulfated in the presence of a pyridine-SO3' complex. The obtained geranyl and neryl sulfates were tested as alkylating agents. These compounds were chosen to reveal the influence of the α-isoprene unit configuration on their alkylation (prenylation) ability. S-Geranyl cysteine was prepared to demonstrate the applicability of this method for prenylation of peptides containing mercapto amino acids.
13
Content available remote

The search for polyprenols in dendroflora of Vietnam

62%
EN
The occurrence of polyprenols in leaves of over 340 species of dendroflora in natural habitats in the regions of Hanoi and Hue in Vietnam was studied. Plant material was collected in the late autumn (October/November) during the end of a vegetation season. Leaves of about 200 plant species did not contain detectable amounts of polyprenols in contrast to few systematic families, e.g. Moraceae, Euphorbiaceae, where polyprenols were highly abundant and their pattern could be used as a chemotaxonomic criterion. Most often dominating polyprenols were prenol-11 and prenol-12. In several angiosperm species prenol-13 and detectable amounts of prenol-14 were also found. The incidence of prenol-13 and -14 was not restricted to a specific taxonomic group since species exhibiting domination of such longer chain polyprenols belonged to various systematic families. In some plants (e.g. Ceiba pentandra) α-cis polyprenols were accompanied by α-trans counterparts. This report describes several new plant species that may serve as natural sources of long chain polyprenols.
15
Content available remote

Dolichols of the fern Matteucia struthiopteris.

52%
EN
Dolichols isolated from leaves of the fern Matteucia struthiopteris were present as a mixture of prenologues composed of 14 up to 20 isoprene units with Dol-16 dominating. They comprised approximately 0.004% of the fresh weight of fresh plant tissue and were accompanied by traces of polyprenols (Pren-14 up to Pren-17, Pren-16 dominating). Their structure was confirmed by electropray ionization mass spectrometry (ESI-MS). This is the first time that dolichols have been reported as dominating polyisoprenoid alcohols in plant photosynthetic tissue.
EN
In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.
19
Content available remote

Long-chain polyprenols in gymno-sperm plants

50%
EN
Cationic linear poly-cis-isoprenoid prepared from natural plant polyprenol in a mixture with dioleyl phosphatidylethanolamine was found to be an effective lipofection agent for eukaryotic cells. The transfecting activity is related to the poly-cis structure of the polyprenyl chain.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.