Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 10

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the light of environmental law utilization lignite waste in non-energy sectors of the economy is a rational way to manage them. Lignite due to the lower degree of coalification and calorific value as well as a high content of humic substances becomes a valuable component of fertilizer. The paper presents the possibility of using lignite waste as a raw material in the process of obtaining humic acids with 0.1 M NaOH. The idea of the process combines production, environmental and economic purposes. After the extraction process of humic acids and considering the possibility of using waste formed during the process, were carried out a number of studies to assist in choosing the best solution to its management.
EN
PAPRs (Partially Acidulated Phosphate Rocks) are the most prospective phosphate fertilizers, mainly through the use of the smaller amount of reagents and the ability to utilize low-grade phosphate rocks with a low content of P2O5. The aim of our studies was to investigate the temperature and moisture infl uence on the curing process of PAPR-type fertilizer products. Fertilizer preparations of a PAPR-type were obtained in the Atlas model-type apparatus (Syrris Ltd.). The curing temperature and the moisture content were controlled by the heating time of the reaction vessel and the degree of PAPR stoichiometric norm (ηPAPR). Our results indicate that increasing the curing temperature of the PAPR-type fertilizer product by 10oC can lead to a decrease in the moisture content of the fi nal product by an average value of 1.5% w/w. Additionally reducing the moisture content by 1% w/w may correspond to an increase in P2O5 content by an average value of 0.5% w/w.
3
81%
EN
The results of physicochemical analyses of raw and composted turkey droppings and those of germination tests carried out using the droppings are presented. On the basis of the results formulas for microelement mineral-organic fertilizers have been developed and fertilizer rates have been determined for winter wheat.
EN
Research on the possibilities of utilizing several waste substances for the production of suspension fertilizers has been carried out. The substances were: sludge from the ALWERNIA S.A. Chemical Plant - a potential source of phosphorous (~20% by wt. P2O5) and waste sludge from the production of magnesium sulphates and nitrates in the Złotniki S.A. Chemical Plant - a substance aiding the stability of suspension and magnesite (a source of magnesium). The possibility of chemical activation of clayey minerals through ion exchange was investigated. Na2CO3 was used for this purpose. Fertilizer samples PK and NPK were found to be highly stable (syneresis < 25%). The NPK +3% MgO sample was found to have particularly good properties. The activation of the clayey materials by Na2CO3 resulted in an increase in the stability coefficient in the case of bentonite SN and clay TIK by 0.88964 and 0.516304, respectively.
EN
Utilization of brewery wastes is one of the solutions for the production of the fodder supplements containing biogenic nutrients. The condition of such application is to meet the requirements included in the regulations regarding animal feeding, particularly removing a bitter taste. The aim of the performed investigations was the removal of bitter acids from the post-extraction hop waste using the calcium oxide addition. For the examination hop wastes obtained as a by-product from the CO2 plant extraction in supercritical conditions, were applied. Physicochemical properties of the waste samples collected for the investigations were determined by applying the available standard analytical techniques. The analyses of the determination of bitter acids were carried out by the high performance liquid chromatography method. During the experiments very good effects of bitter acids removal from hop wastes, were obtained by using CaO suspensions in water. The investigations on the influence of the CaO concentration in suspension on the efficiency of bitter acids removal indicate the possibility of applying suspensions by 2 wt% for this purpose.
6
Content available remote

Environmental aspects of feed phosphates production

81%
EN
The risks resulting from the selected feed phosphates application in animal nutrition were analyzed. The results of the analyses of the fodder phosphates obtained in laboratory conditions were presented, including the toxic and disadvantageous substances with regard to their impact upon the environment.
EN
The results of laboratory investigations into the aerobic biodegradation of chelating compounds in water medium under static test conditions are presented. It was found that nitrilotriacetic acid (NTA) and glutamic acid diacetic acid (GLDA) are more readily biodegradable than ethylenediaminetetraacetic acid (EDTA) commonly used in the production of liquid fertilizers. Biodegradation was evaluated on the basis of compound decay and changes in COD.
EN
The present study examines the impacts of dry mass content in pig liquid manure on its treatment with a filtration method. Samples of liquid manure with variable dry mass content were subjected to treatment using phosphoric acid, sulfuric acid, lime milk and superphosphate, as well as to thermal treatment, while in the last phase of pressure filtration. Increased dilution of the manure resulted in a reduced raw materials consumption ratio and improved filtration process efficiency, which ranged from 408 to 3765 kg/m2/h. The highest filtration efficiency was achieved using manure containing 3% dry mass, while the lowest efficiency was observed in manure at 10% dry mass. The increase in liquid manure dilution also reduced chemical oxygen demand in the filtrate, which ranged from 15 062 to 3656 mg/l. An appropriate manure dilution level, under the constant parameters of the treatment process, reduced phosphorus content in the filtrate to < 10 mg/kg while simultaneously enriching the post-filtration sediment with this precious fertilizing component.
9
Content available remote

Pig manure treatment by filtration

71%
EN
A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m2/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.
10
61%
EN
Mineral fertilizers are indispensable for the intensification of plant production in agriculture. This process can cause a significant odour nuisance for the environment due to organic compounds content in apatites and phosphorites converted into fertilizers. The following chemical compounds are emitted to the gas phase among others: hydrogen sulphide, organic sulphides and (methyl, ethyl, isopropyl, butyl) disulphides, chain hydrocarbons, organic oils, waxes and carboxylic acids. A method using gas chromatography analysis with the mass detector (TD-GS-MS), to determine trace concentrations, was developed and tested for the assessment of odour nuisant substances emission from these processes. Application of additional thermal desorber to enable the intense desorption of the investigated organic compounds (previously adsorbed on classical sorbents) in the industrial research has been taken into consideration. In effect it facilitates the accumulating substances to be analyzed at short time interval providing identifying measurements. The technique has been verified during the investigation of the substances emitted in fertilizers processes at Maroko phosphorite decomposition. The organic sulfur compounds, aliphatic and aromatic hydrocarbons have been detected.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.