Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this work analysis of the structural and optical properties of TiO2 thin films doped with terbium has been described. Samples were prepared by a high energy reactive magnetron sputtering process under low pressure of oxygen plasma. X-ray diffraction results have shown that different TiO2 crystal forms have been produced, depending on the amount of Tb dopant. The undoped matrix had rutile structure with crystallites with a size of 8.7 nm, while incorporation of 0.4 at. % of Tb into the film during the sputtering process resulted in anatase structure with bigger crystallites (11.7 nm). Increasing the amount of terbium up to 2 at. % and 2.6 at. % gave rutile structure with crystallites with a size of 6.6 nm for both films. However, Raman spectroscopy has revealed that in the case of TiO2:(2 at. % Tb), except for the rutile form, the presence of fine-crystalline anatase was observed. Moreover, the lack of Raman peaks shift attests to the lack of stress in the titania lattice of all of the TiO2:Tb films. This fact indicates localization of Tb3+ ions on the surface of TiO2 nanocrystals. In the case of optical investigation, results have shown that doping with terbium has a significant influence on the properties of TiO2, but it does not decrease the high transparency of the matrix. The observed changes of the transmission characteristics were produced only due to modification of the TiO2:Tb structure. Photoluminescence measurements have shown that emission of light from TiO2:Tb films occurs when the amount of terbium is 2.6 at. %. Based on the obtained results a scheme of direct energy transfer from titanium dioxide matrix (with rutile structure) to Tb3+ ions has been proposed.
EN
Transparent oxide semiconducting thin films based on mixed Ti-V oxides were prepared using a modified reactive magnetron sputtering method. Based on structural investigations performed with the help of x-ray diffraction and transmission electron microscopy analysis, two distinct regions in the prepared thin film have been observed: a nanocrystalline TiO2-V2O3-V2O5 mixed composition, and a thin layer consisting of amorphous phase and nanocystalline TiO2 phase deposited directly at the substrate. Optical measurements show excellent transmission in the visible spectral range of 73%, on average. Resistivity of the thin film was found at the order of 105 Ω cm at room temperature. The preparation of mixed Ti-V oxides provides a combination of high transparency and semiconducting properties.
EN
In this work, the influence of Tb-doping on structure, and especially hardness of nanocrystalline TiO2 thin films, has been described. Thin films were formed by a high-energy reactive magnetron sputtering process in a pure oxygen atmosphere. Undoped TiO2-matrix and TiO2:Tb (2 at. % and 2.6 at. %) thin films, had rutile structure with crystallite sizes below 10 nm. The high-energy process produces nanocrystalline, homogenous films with a dense and close packed structure, that were confirmed by X-ray diffraction patterns and micrographs from a scanning electron microscope. Investigation of thin film hardness was performed with the aid of a nanoindentation technique. Results of measurements have shown that the hardness of all manufactured nanocrystalline films is above 10 GPa. In the case of undoped TiO2 matrix, the highest hardness value was obtained (14.3 GPa), while doping with terbium results in hardness decreasing down to 12.7 GPa and 10.8 GPa for TiO2:(2 at. % Tb) and TiO2:(2.6 at. % Tb) thin films, respectively. Incorporation of terbium into TiO2-matrix also allows modification of the elastic properties of the films.
EN
In this work photocatalytic properties of TiO2 thin films doped with different amount of Tb have been described. Thin films were prepared by high energy reactive magnetron sputtering process. Comparable photocatalytic activity has been found for all doped TiO2 thin films, while different amounts of Tb dopant (0.4 and 2.6 at. %) results in either an anatase or rutile structure. It was found that the terbium dopant incorporated into TiO2 was also responsible for the amount of hydroxyl groups and water particles adsorbed on the thin film surfaces and thus photocatalytic activity was few times higher in comparison with results collected for undoped TiO2 thin films.
EN
Electrical and optical properties of TiO2:Pd thin films deposited from Ti-Pd mosaic targets sputtered in reactive oxygen plasma have been studied. The properties were investigated for thin films with the Pd amount of 5.5 at. %, 8.4 at. % and 23 at. %. Based on resistivity measurements a drop from 103 down to almost 10−3Ωcm has been recorded when the Pd amount was varied from 5.5 at. % to 23 at. %, respectively. Moreover, it was shown that doping with different amounts of Pd results in the possibility of obtaining both types of electrical conduction: n-type for the TiO2 with 5.5 at. % and 8.4 at. % of Pd and p-type for the TiO2 with 23 at. % of Pd thin films. From optical measurements it has been found that as the Pd amount was increased the transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength range of up to 600 nm. The optical band gap was calculated for direct and indirect transitions from optical absorption spectra. Structural properties were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The XRD patterns displayed occurrence of the crystalline, TiO2-rutile for lower Pd amounts (5.5 at. %, 8.4 at. %), while the TiO2:Pd (23 at. %) thin films displayed XRD-amorphous behaviour. Images obtained from AFM displayed dense, nanocrystalline structure with homogenous distribution of crystallites. Additionally performed secondary ion mass spectroscopy investigation confirmed homogenous distribution of Pd in the whole thickness of the prepared thin films.
EN
Titanium dioxide thin films doped with the same amount of neodymium were prepared using two different magnetron sputtering methods. Thin films of anatase structure were deposited with the aid of Low Pressure Hot Target Magnetron Sputtering, while rutile coatings were manufactured using High Energy Reactive Magnetron Sputtering process. The thin films composition was determined by energy dispersive spectroscopy and the amount of the dopant was equal to 1 at. %. Structural properties were evaluated using transmission electron microscopy and revealed that anatase films had fibrous structure, while rutile had densely packed columnar structure. Atomic force microscopy investigations showed that the surface of both films was homogenous and consisted of nanocrystalline grains. Photocatalytic activity was assessed based on the phenol decomposition. Results showed that both thin films were photocatalytically active, however coating with anatase phase decomposed higher amount of phenol. The transparency of both thin films was high and equal to ca. 80% in the visible wavelength range. The photoluminescence intensity was much higher in case of the coating with rutile structure.
EN
In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro) of thin films. Morphological changes of mouse fibroblasts (L929 cell line) after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.
EN
In this work photocatalytic properties of TiO2 thin fi lms doped with 8.51 at. % of Nd were described. The self-cleaning phenomenon of thin fi lms was discussed together with the structural, optical and surface properties of prepared thin fi lms. Transparent coatings based on titanium dioxide were manufactured by high-energy reactive magnetron sputtering process. Incorporation of Nd during sputtering process results in amorphous behavior, without a signifi cant infl uence on transparency and colour as compared to the undoped TiO2-rutile matrix. Nevertheless, doping with neodymium doubles the photocatalytic activity of the matrix due to higher quantity of photo-generated charge carriers and more effi cient mechanism of energy transfer.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.