Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Isothermal section of the Er-Co-In system at T = 870 K was constructed by means of X-ray powder diffraction, microstructure, and EDX-analyses. Twelve ternary compounds, namely ErCoIn5 (HoCoGa5-type), Er6Co17.92In14 (Lu6Co17.92In14-type), ErCo4In (MgCu4Sn-type), Er2CoIn8 (Ho2CoGa8-type), Er10Co9In20 (Ho10Ni9In20-type), Er3Co1.87In4 (Lu3Co1.87In4-type), ErCoIn, Er11Co4In9 (Nd11Pd4In9-type), Er11Co3In6, Er8CoIn3 (Pr8CoGa3-type), Er6Co2.19In0.81 (Ho6Co2Ga-type), and Er13.83Co2.88In3.10 (Lu14Co2In3-type) exist in the Er-Co-In system at this temperature. The crystal structure of the Er8CoIn3 compound was determined by means of X-ray powder method (Pr8CoGa3-type, P63mc space group, a = 1.02374(2) nm, c = 0.68759(2) nm). Almost none of the binary compounds dissolve the third component. The exception is the existence of the solid solution based on ErCo3 binary compound, which dissolves up to 8 at.% of In. [...]
2
Content available remote

The crystal structure of Ho4Ni11In20

100%
EN
The polycrystalline Ho4Ni11In20 was obtained by arc-melting of the elements. The subsequent high temperature procedure was used for single crystal growth. Crystal structure of the compound was investigated by X-ray single crystal method: U4Ni11Ga20 type, C 2/m, a = 22.4528(17), b = 4.2947(3), c = 16.5587(13) Å, β = 124.591(5)°, R1 = 0.0276, wR2 = 0.0493 for 1989 independent reflections with [I>2σ(I)]. The structure is composed of three-dimensional network from Ni and In atoms in which Ho atoms fill distorted pentagonal channels. [...]
EN
Polycrystalline Sm4Ni11In20 was obtained by arc-melting of metal ingots. A subsequent high temperature treatment was used for single crystal growth. The Sm4Ni11In20 crystal structure (U4Ni11Ga20 type; C2/m, a = 22.5457(3) Å, b = 4.34929(5) Å, c = 16.5479(2) Å, β = 124.592(2)°, R1 = 0.0358, wR2 = 0.0934) was determined by single crystal synchrotron radiation X-ray diffraction from 2014 independent reflections with I > 2σ(I). Sm4Ni11In20 extends the R 4Ni11In20 (R = Y, Gd, Tb, Dy, Ho) series of phases. The R 4Ni11In20 and RNi3In6 (LaNi3In6 type; R = La, Ce, Pr, Nd, Eu) series have similar compositions. Their structures share similar fragments; in particular the rare earth atom coordination polyhedra are pentagonal prisms with additional atoms.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.