Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Biocatalysts with microorganisms immobilized on solid carriers could provide the solution for development of continuous industrial processes for ethanol obtaining by fermentation of sugars. In this study, modified polyacrylamide hydrogels and marrow stem sunflower are used as supports for Saccharomyces cerevisiae yeast immobilization. The obtained structures are used for fermentation of molasses in batch systems. The free yeast cells are used as reference. The modification of polyacrilamide matrix with (2-hydroxyethyl)methacrylate has a positive effect on structure pore uniformity and fermentation performance. The mechanical properties of the obtained biocatalysts are compared. The novel natural matrix has net superior compression strength.
2
Content available remote

Nanoparticles synthesis by electron beam radiolysis

64%
EN
Electron beam (EB) irradiation is a useful method to generate stable silver nanoparticles without the interference of inherent impurities generated from chemical reactions. Our experiments were carried out using linear electron beam accelerators with two different EB absorbed dose rates: 2 kGy min−1 and 7–8 kGy s−1, and with different absorbed dose levels. The optimum conditions for silver nanoparticles (AgNPs) generation by radiolysis, or by radiolysis combined with chemical reduction, were established. In order to obtain a good yield for AgNPs synthesized by radiolysis, a high dose rate is required, resulting in a rapid production process. At low absorbed dose rates, the utilization of a stabilization agent is advisable. By modifying the experimental conditions, the ratio between the chemical and radiolytic reduction process can be adjusted, thus it is possible to obtain nanoparticles with tailored characteristics, depending on the desired application.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.