Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In bioprocesses lipases are typically used in immobilized form, irrespective of type of reaction systems, to ensure an even distribution of catalysts in water restricted media and/or to facilitate separation and reuse. In these studies we report on the selection of appropriate enzyme-carrier preparation for hydrolysis reaction in aqueous and biphasic systems and transesterification in organic solvent. For this Candida rugosa lipase was bound by adsorption or covalent attachment onto various carriers to give 24 preparations. Selection of proper preparation was based on reactivity, thermal stability (4 h at 60°C), possibility of drying and operational stability in 17-23 successive batch processes of 4-nitrophenyl palmitate hydrolysis in water. Activity of preparations varied from 20 to 5100 U∙mL-1 but the most stable preparations were those of moderate activity: bound by adsorption or covalent attachment to NH2-Kieselgel or acrylic carrier (retained activity over 90%). Selected preparations were used for hydrolysis of ethyl (1-butyryloxyethyl)-phenylphosphinate in biphasic system, and, after drying, in ethyl (1-hydroxyethyl)-phenyl-phosphinate transesterification. In this study operational stability was the principal criterion of selection. In water system, lipase covalently bound to NH2-Kieselgel was the best - preserved 50% of initial activity in consecutive batch processes. In biphasic system and lipase covalently bound to acrylic and NH2-Kieselgel the values were 90 or 77%, respectively, whereas in organic solvent, when lipase was immobilized on NH2-Kieselgel by adsorption, it was 50%. Thus, NH2-Kieselgel appears to be an universal matrix for investigated lipase immobilization and can be used in all reaction systems.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.