Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Familial hypertrophic cardiomyopathy (HCM) displays autosomal dominant inheritance with incomplete penetration of defective genes. Data concerning the familial occurrence of ventricular preexcitation, i.e. Wolff-Parkinson-White (WPW) syndrome, also indicate autosomal dominant inheritance. In the literature, only a gene mutation on chromosome 7q3 has been described in familial HCM coexisting with WPW syndrome to date. The present paper describes the case of a 7-year-old boy with HCM and coexisting WPW syndrome. On his chromosome 14, molecular diagnostics revealed a C 9123 mutation (arginine changed into cysteine in position 453) in exon 14 in a copy of the gene for beta-myosin heavy chain (MYH7). It is the first known case of mutation of the MYH7 gene in a child with both HCM and WPW. Since no linkage between MYH7 mutation and HCM with WPW syndrome has been reported to date, we cannot conclude whether the observed mutation is a common cause for both diseases, or this patient presents an incidental co-occurrence of HCM (caused by MYH7 mutation) and WPW syndrome.
EN
Hirschsprung disease (HSCR) is a congenital, heterogeneous disorder, characterized by the absence of intestinal ganglion cells. Recent advances show that the RET gene is a major locus involved in the pathogenesis of HSCR. The aim of this study was to analyse if the HSCR phenotype in the Polish population is associated with the presence of polymorphisms in exons 2, 3, 7, 11, 13, 14 and 15 of the RET gene. Molecular results were compared with clinical and long-term follow-up data in 70 Polish patients with HSCR (84.3% with a short segment and 15.7% with a long segment of aganglionic gut). Single-nucleotide polymorphisms were analysed by using the minisequencing SNaPshot multiplex method. The 135G>A polymorphism in RET exon 2 was overrepresented in HSCR patients, compared with a healthy control group. Moreover, the 135G>A variant was shown to be associated with the severe HSCR phenotype. Two other polymorphisms, 2071G>A in exon 11 and 2712C>G in exon 15, were underrepresented in the patients. The results confirm that these RET polymorphisms play a role in the aetiology of HSCR.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.