Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Neutron powder diffraction and magnetization measurements have been performed for La_{0.7}Sr_{0.3}Mn_{0.7}Ti_{0.3-x}Al_xO₃ (0 ≤ x ≤ 0.15) stoichiometric compounds. Increase of the Al³⁺ content enlarges the Mn⁴⁺ ions fraction from 0% (x=0) up to around 20% (x=0.15). The x=0 composition around 150 K exhibits a structural transition from the rhombohedral phase to the orthorhombic one whereas the crystal structure of the compounds with x=0.1 and 0.15 remains to be rhombohedral down to 2 K. The substitution of Ti⁴⁺ by Al³⁺ ions is accompanied by a gradual increase in the bond angle Mn-O-Mn and decrease in the Mn-O bond length which lead to enhancement of the covalent component of the chemical bond. All these compounds exhibit ferromagnetic components below 100 K. Magnetic moments estimated per manganese from the neutron powder diffraction data are found to be around 1.3 μ_{B} (x=0) and 1.7 μ_{B} (x=0.1 and 0.15) at 2 K. It is suggested that ferromagnetism is originated predominantly from the Mn³⁺-O-Mn³⁺ and Mn³⁺-O-Mn⁴⁺ superexchange interactions whereas bond angles fluctuation leads to magnetic frustrations. Enhancement of covalence slightly increases ferromagnetism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.