Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
It is well documented that the high oxygen affinity elements such as Y, Ce, La, Er and other rare earth elements added to steel in small amounts can improve their high temperature oxidation resistance. Rare earth elements can be either alloyed during the steel making process or introduced through surface treatment techniques. Improvement of high temperature oxidation resistance of AISI 316 L steel by incorporation Ce and La elements into its near surface region using high intensity pulsed plasma beams in so-called deposition by the pulse erosion mode was investigated in the present work. The samples were irradiated with 3 short (μs scale) intense (energy density 3 J/cm^2) plasma pulses. Heating and cooling processes occur under non-equilibrium conditions. In all samples the near surface layer of the thickness in μm range was melted and simultaneously doped with cerium and lanthanum. The modified samples were oxidized at 1000°C for 100 h in air. The obtained effects were: oxide scales formed on the treated samples were more fine-grained, compact and adhering better that those formed on the un-treated samples.
EN
The results of investigation of the polycrystalline boron implanted by magnesium and argon plasma pulse treatment are presented. The four-probe electric conductivity measurements and magnetically modulated microwave absorption showed the presence of superconducting islands below the temperature of 25 K. Below T=23 K we detected the Kondo effect, a logarithmic increase in the resistivity as the temperature is lowered, due to iron impurity.
EN
The results of investigation of the MgB_2 layers prepared on silicon substrate by implantation of Mg ions into boron substrate are presented. After implantation the annealing processes were carried out at temperatures 673 K, 773 K, and 873 K in a furnace in an atmosphere of flowing Ar-4%H_2 gas mixture. The samples were characterized by: four-probe electric conductivity measurements and magnetically modulated microwave absorption. Our results showed that due to silicon substrate the diffusion of implanted Mg ions into boron materials should be limited, and the superconducting phase forms a continuous MgB_2 layer and the resistivity for all samples fall down to zero below T_{c}. The transition temperature T_{c} becomes higher with increasing annealing temperature: T_{c}=18 K (for annealing at T_{A}=673 K), T_{c}=20 K (for annealing at T_{A}=773 K), and T_{c}=27 K (for annealing at T_{A}=873 K).
EN
An attempt to synthesize superconducting MgB_2 inter-metallic compound from the liquid state is presented. The process consists of two steps. In the first one, boron ions are implanted into a magnesium substrate. In the second one, the near-surface region of such system is melted by short, intense hydrogen plasma pulses without necessity of annealing in Mg vapor. A magnetically modulated microwave absorption method was used to detect superconducting regions in the obtained MgB_2 layer. Percolation between nano-regions (islands) of MgB_2 has not been observed. However, a superconducting state of the insulated islands has been experimentally proven with transition temperatures T_C as high as 31 K.
5
Content available remote

The Evolution of Superconducting Phase MgB_x

84%
EN
Thin layers of MgB_x were studied in order to define evolution of superconducting phase after Mg ions implantation into boron substrate. Three fluencies of energies 140, 80, and 40 keV were used to establish proper stoichiometry to synthesize homogeneous MgB_2 film. Additionally, the annealing processes were carried out at temperatures 400, 500, and 600°C in a furnace in an atmosphere of flowing Ar-4%H_2 gas mixture. The quality of the superconducting material was examined by magnetically modulated microwave absorption, and magnetic and resistivity measurements. The results showed that T_c becomes higher with increasing annealing temperature. However, the fraction of superconducting phase decreases, due to partial evaporation of Mg ions and their deeper migration into boron substrate.
EN
The results of investigation of the MgB_2 inter-metallic compound with the use of boron ions implantation and plasma pulse treatment are presented. The samples were characterized by: four-probe electric conductivity measurements, magnetically modulated microwave absorption, and magnetic measurements. For hydrogen and argon pulsed plasma treatment the samples with T_c ranging from 10 K to 32 K were obtained. The superconducting phase does not form a continuous layer since the resistivity does not fall down to zero. Apparently, separate islands of superconducting phase are connected through metallic Mg paths. All samples are still below the percolation threshold.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.