Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 19

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The current investigation was conducted to determine whether sex differences in skeletal accelerations and shock attenuation were evident during running. Twelve male and twelve female recreational runners ran at 4.0 m.s-1. Axial accelerations were measured at 1,000 Hz using accelerometers mounted at the tibia and sacrum. Peak tibial and sacrum axial accelerations were obtained and utilized to calculate the extent of shock attenuation. The results showed that peak sacrum accelerations were significantly larger in female runners (5.16 ±0.64 g) compared to males (4.37 ±0.75 g). It was also shown that shock attenuation (31.90 ±19.85%) was significantly lower in female runners in relation to males (47.89 ±11.46%). The findings from the current investigation indicate that female runners experience greater skeletal accelerations which may place greater stress on the musculoskeletal structures required attenuate transients forces which can be detrimental to passive tissues.
EN
The current study aimed to investigate the influence of energy boost, spring and conventional footwear on running economy and substrate usage. Ten male runners completed 5 min steady state runs in energy boost, spring and conventional footwear. Running economy and percent contribution of carbohydrate to total calorie expenditure were assessed. Participants also subjectively indicated which shoe condition they preferred for running. Differences between footwear were examined using repeated measures ANOVA. The results showed firstly that running economy was significantly improved in the energy return (33.36 ml.kg.min -1) compared to spring (34.83 ml.kg.min -1) and conventional footwear (34.65 ml.kg.min -1). In addition, percent carbohydrate was significantly lower in the energy return (74.51%) in comparison to the spring (78.56%) and conventional (78.52%) footwear. As running economy was improved and carbohydrate utilization reduced in the energy return footwear, this study indicates that they may be associated with improvements in running performance.
Human Movement
|
2013
|
vol. 14
|
issue 3
229-237
EN
Purpose. The lunge is a fundamental offensive fencing technique, common to all contemporary fencing styles. Therefore, when using 3-D kinematic analysis to quantify lower extremity rotations during the fencing lunge, it is important for researchers to correctly interpret this movement. Locating the centre of the hip is required to accurately quantify hip and knee joint rotations, with three non-invasive techniques using anatomical, functional and projection methods currently available for the estimation of hip joint centre. This study investigated the influence of these three techniques on hip and knee joint kinematics during the fencing lunge. Methods. Three-dimensional kinematics of the lunge were collected from 13 experienced epee fencers using an eight-camera motion capture system. The 3-D kinematics of the lunge were quantified using the three hip joint centre estimation techniques. Repeated measures ANOVAs were used to compare the discrete 3-D kinematic parameters, and intra-class correlations were employed to identify similarity across the 3-D kinematic waveforms from the three techniques. Results. The results indicate that whilst the kinematic waveforms were similar (R2 ≥0.96); significant differences in discrete parameters were also evident at both the hip and knee joint in the coronal and transverse planes. Conclusions. It appears based on these observations that different hip joint centre locations can significantly influence the resultant kinematic parameters and cannot be used interchangeably.
4
Content available remote

Sex Differences in Tibiocalcaneal Kinematics

64%
Human Movement
|
2014
|
vol. 15
|
issue 2
105-109
EN
Purpose. Female runners typically suffer more from chronic running injuries than age-matched males, although the exact biome-chanical mechanisms behind the increased susceptibility of female runners are unknown. This study aimed to compare sex differences in tibiocalcaneal kinematics during the stance phase of running. Methods. Twenty male and twenty female participants ran at 4.0 m · s–1. Tibiocalcaneal kinematics were measured using an eight-camera motion analysis system and compared using independent samples t tests. Results. Peak eversion and tibial internal rotation angles were shown to be significantly greater in female runners. Conclusions. based on these observations, it was determined that female runners may be at increased risk from chronic injury development in relation to excessive tibiocalcaneal motions in the coronal and transverse planes.
5
64%
EN
Purpose. The aim of the current investigation was to determine whether female recreational runners exhibit distinct patellar tendon loading patterns in relation to their male counterparts. Methods. Twelve male (age 26.55 ± 4.11 years, height 1.78 ± 0.11 m, mass 77.11 ± 5.06 kg) and twelve female (age 26.67 ± 5.34 years, height 1.67 ± 0.12 m, mass 63.28 ± 9.75 kg) runners ran over a force platform at 4.0 m · s-1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system which operated at 250 Hz. Patellar tendon loads were examined using a predictive algorithm. Sex differences in limb, knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that patellar tendon force (male = 6.49 ± 2.28, female = 7.03 ± 1.35) and patelllar tendon loading rate (male = 92.41 ± 32.51, female = 111.05 ± 48.58) were significantly higher in female runners. Conclusions. Excessive tendon loading in female runners indicates that female runners may be at increased risk of patellar tendon pathologies.
EN
The barbell squat is a fundamental strength and conditioning exercise, with two principal variants; back and front. Whilst previous studies have examined the mechanical differences of the front and back squat, there is no information comparing the distributions of muscle forces between these variants. This study aimed to compare estimated forces developed by the primary skeletal muscles used in the front and back squat. Twenty-five male participants were recruited with 6.24 ±2.21 years of experience in squat lifting and 1 repetition maximum values of 127.5 ±18.8 and 90.6 ±14.4 kg for the back and front squat lifts. Participants completed both back and front squats at 70% of their front squat 1 repetition maximum. Muscle forces were determined during dynamic situations using motion capture data, in addition to sagittal plane kinematics. Differences between squat conditions were examined using a multivariate analysis of variance. The kinematic analysis showed that the back squat was associated with significantly (p < 0.05) greater flexion of the trunk. Examination of muscles forces indicated that erector spinae forces were also significantly (p < 0.05) larger in the back squat. No significant differences were identified for skeletal muscle forces elsewhere (p > 0.05). Our results indicate that neither the front nor back squat provides any marked difference in muscle force production, aside from that isolated to the lower back. These findings lead the conclusion that neither the front nor back squat conditions confer any additional benefits over the other in terms of the skeletal muscle force output.
EN
Purpose. Three-dimensional (3-D) kinematics are widely utilized to quantify movement in cycling analyses. Three-dimensional angular kinematics are obtained using the Euler/Cardan technique, however, Cardan angles are influenced by their ordered sequence and may affect the resultant angular parameters. An XYZ sequence of rotations is currently recommended, although this technique may not always be appropriate when coronal and transverse plane angles are quantified. This study aimed to determine the influence of the six available Cardan sequences on 3-D lower extremity kinematics during cycling. Methods. Kinematic information was obtained from twelve cyclists using an optoelectronic 3-D motion capture system operating at 250 Hz. Repeated measures ANOVAs were used to compare the kinematic parameters obtained using the six Cardan sequences, and intraclass correlations were employed to detect the presence of crosstalk across planes. Results. The results show that discrete kinematic parameters in the sagittal, coronal and transverse planes were significantly greater when using the YXZ and ZXY sequences. It was also observed that these sequences were associated with the strongest correlations from the sagittal plane and also exhibited evidence of gimbal lock. Conclusions. The results suggest that the accurate representation of 3-D kinematics during cycling should continue utilizing the XYZ sequence and avoid the use of the YXZ and ZXY sequences.
EN
Identification of the hip joint centre (HJC) is important in the biomechanical examination of human movement. However, there is yet to be any published information regarding the influence of different HJC locations on hip and knee joint kinetics during functional tasks. This study aimed to examine the influence of four different HJC techniques on 3- D hip and knee joint kinetics/kinematics during the squat. Hip and knee joint kinetics/kinematics of the squat were obtained from fifteen male participants using an eight camera motion capture system. The 3-D kinetics/kinematics of the squat were quantified using four hip joint centre estimation techniques. Repeated measures ANOVAs were used to compare the discrete parameters as a function of each HJC location. The results show that significant differences in joint angles and moment parameters were evident at both the hip and knee joint in the coronal and transverse planes. These observations indicate that when calculating non-sagittal joint kinetics/kinematics during the squat, researchers should carefully consider their HJC method as it may significantly affect the interpretation of their data.
EN
Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged.
EN
Errors in kinematic data are referred to as noise and are an undesirable portion of any waveform. Noise is typically removed using a low-pass filter which removes the high frequency components of the signal. The selection of an optimal frequency cut-off is very important when processing kinematic information and a number of techniques exists for the determination of an optimal frequency cut-off. Despite the importance of cut-off frequency to the efficacy of kinematic analyses there is currently a paucity of research examining the influence of different cut-off frequencies on the resultant 3-D kinematic waveforms and discrete parameters. Twenty participants ran at 4.0 m•s-1 as lower extremity kinematics in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. The data were filtered at a range of cut-off frequencies and the discrete kinematic parameters were examined using repeated measures ANOVA’s. The similarity between the raw and filtered waveforms were examined using intra-class correlations. The results show that the cut-off frequency has a significant influence on the discrete kinematic measure across displacement and derivative information in all three planes of rotation. Furthermore, it was also revealed that as the cut-off frequency decreased the attenuation of the kinematic waveforms became more pronounced, particularly in the coronal and transverse planes at the second derivative. In conclusion, this investigation provides new information regarding the influence of digital filtering on lower extremity kinematics and re-emphasizes the importance of selecting the correct cut-off frequency.
EN
Purpose. The transmission of tibial accelerations through the musculoskeletal system may contribute to the aetiology of injuries. Therefore, determining the mechanisms that regulate impact accelerations may have potential clinical significance. This study aimed to determine the influence of lower extremity kinematics on the regulation of both time and frequency domain characteristics of tibial accelerations during running. Methods. Forty participants ran at 4.0 m · s-1 ± 5%. Three-dimensional joint kinematics from the hip, knee and ankle were measured using an eight-camera motion analysis system operating at 250 Hz. Regression analyses treating time and frequency domain tibial acceleration parameters as criterion variables were used to identify lower extremity parameters associated with the passive regulation of impact accelerations. Results. The overall regression model yielded an adj. R2 = 0.13, p 0.01. Knee flexion velocity at footstrike was identified as a significant regulator of tibial accelerations in the time domain. No kinematic variables were identified as significantly related to the frequency domain properties of the signal. Conclusions. The findings of the current investigation suggest that sagittal plane knee flexion velocity at footstrike can regulate the magnitude of impact loading linked to the development of chronic injuries.
EN
Purpose. There has yet to be a combined analysis of three-dimensional multi-segment foot kinematics and plantar fascia strain in running gait at various degrees of inclination. The aim of the current study was therefore to investigate the above during treadmill running at different inclines (0°, 5°, 10° and 15°). Methods. Twelve male participants ran at 4.0 m · s-1 in the four different inclinations. Three-dimensional kinematics of the foot segments and plantar fascia strain were quantified for each incline and contrasted using one-way repeated measures ANOVA. Results and conclusions. The results showed that plantar fascia strain increased significantly as a function of running incline. Given the projected association between plantar fascia strain and the aetiology of injury, inclined running may be associated with a greater incidence of injury to the plantar fascia.
EN
Purpose. Localised peak pressure linked to overuse injuries has been documented extensively at the plantar surface during human locomotion. There is however a paucity of research investigating pressure applied to non-plantar regions of the foot during movement. This study investigates the magnitudes of peak pressures applied to the lateral side of the 5th metatarsal head (5MTH) and calcaneus (CC) by the uppers of footwear during sports movements. Method. A plantar pressure measuring system was adapted to fit into a sock covering the lateral aspect of the L5MTH and LCC. Six male participants (26.7 ± 2.4 years, 75.2 ± 5.5 kg) performed ten trials each of starting, stopping, sprinting, cutting and sidestepping at self-selected velocities, whilst wearing the pressure measuring device. Repeated measures ANOVA’s were used to examine differences between peak pressures at different aspects of the lateral side of the dorsum of the foot. Results. The results indicate significant differences (p 0.05) between peak pressures at the LCC compared to the L5MTH. Significant differences in peak pressure at the L5MTH were also found between movement strategies. No significant differences (p > 0.05) were reported at the LCC between different movements. Conclusions. The results identify a need for athletes pre-disposed to injuries in the uppers of the feet to consider the possible influence of footwear on the magnitudes of peak pressures applied to the lateral side of the dorsum of their feet.
EN
Background: The aim of this study was to identify whether there are differences between plantar pressure distributions experienced whilst wearing ice skates during ice-gliding, compared to standing whilst barefoot, wearing trainers and wearing ice skates. The results of this study aim to provide a greater understanding of the distribution of the pressure through the ice skate to the human musculoskeletal system. Material/Methods: Nine female participants were recruited for this study (age 36.6 years ± 15.3, mass 63.7kg ± 7.4 height 1.63m ± 4.1). Pressure applied to the plantar surface of the feet was recorded at 50Hz using an F-Scan sensor. Data was collected for 5 seconds while participants performed an ice glide in their own ice skates. Standing data was collected over the same period of time while participants stood still on a carpeted surface wearing their own ice skates, their own trainers and cotton socks without shoes. For each condition 10 trials of data were collected. Results: The results reported similar peak pressure distributions under the plantar region of the foot for standing and ice gliding while wearing ice skates. Furthermore, the results identified a shift of peak pressure values to the forefoot and midfoot regions whilst wearing ice skates compared to trainers. Conclusions: This research suggests information on plantar pressures during ice gliding may be obtained from standing data in future research and that ice skates may expose the wearer to an increased risk of plantar pressure related injuries in the forefoot/midfoot regions of the feet.
EN
Three-dimensional (3-D) kinematic analyses are used widely in both sport and clinical examinations. However, this procedure depends on reliable palpation of anatomical landmarks and mal-positioning of markers between sessions may result in improperly defined segment co-ordinate system axes which will produce in-consistent joint rotations. This had led some to question the efficacy of this technique. The aim of the current investigation was to assess the reliability of the anatomical frame definition when quantifying 3-D kinematics of the lower extremities during running. Ten participants completed five successful running trials at 4.0 m·s-1 ± 5%. 3-D angular joint kinematics parameters from the hip, knee and ankle were collected using an eight camera motion analysis system. Two static calibration trials were captured. The first (test) was conducted prior to the running trials following which anatomical landmarks were removed. The second was obtained following completion of the running trials where anatomical landmarks were re-positioned (retest). Paired samples t-tests were used to compare 3-D kinematic parameters quantified using the two static trials, and intraclass correlations were employed to examine the similarities between the sagittal, coronal and transverse plane waveforms. The results indicate that no significant (p>0.05) differences were found between test and retest 3-D kinematic parameters and strong (R2≥0.87) correlations were observed between test and retest waveforms. Based on the results obtained from this investigation, it appears that the anatomical co-ordinate axes of the lower extremities can be defined reliably thus confirming the efficacy of studies using this technique.
EN
Purpose. The aim of the current investigation was to compare the 3-D tibiocalcaneal kinematics between skin- and shoe-mounted markers. Methods. Eleven male participants ran at 4.0m/s ± 5% along a 22 m runway. Tibiocalcaneal kinematics were captured simultaneously using markers placed externally on the shoe and on the skin through windows cut in the shoe. Paired t-tests were used to compare the 3-D kinematic parameters, and intraclass correlations were employed to contrast the kinematic waveforms. Results. Strong correlations were observed between the waveforms at R2 0.85. However, foot movements such as eversion range of motion, peak eversion, peak transverse plane range of motion, velocity of external rotation and peak eversion velocity were all significantly underestimated using shoe-mounted markers. Conclusions. The results indicate that shoe-mounted markers do not fully represent true foot movement.
EN
Electromyography (EMG) is normalized in relation to a reference maximum voluntary contraction (MVC) value. Different normalization techniques are available but the most reliable method for cycling movements is unknown. This study investigated the reliability of different normalization techniques for cycling analyses. Twenty-five male cyclists (age 24.13 ± 2.79 years, body height 176.22 ± 4.87 cm and body mass 67.23 ± 4.19 kg, BMI = 21.70 ± 2.60 kg·m−1) performed different normalization procedures on two occasions, within the same testing session. The rectus femoris, biceps femoris, gastrocnemius and tibialis anterior muscles were examined. Participants performed isometric normalizations (IMVC) using an isokinetic dynamometer. Five minutes of submaximal cycling (180 W) were also undertaken, allowing the mean (DMA) and peak (PDA) activation from each muscle to serve as reference values. Finally, a 10 s cycling sprint (MxDA) trial was undertaken and the highest activation from each muscle was used as the reference value. Differences between reference EMG amplitude, as a function of normalization technique and time, were examined using repeated measures ANOVAs. The testretest reliability of each technique was also examined using linear regression, intraclass correlations and Cronbach’s alpha. The results showed that EMG amplitude differed significantly between normalization techniques for all muscles, with the IMVC and MxDA methods demonstrating the highest amplitudes. The highest levels of reliability were observed for the PDA technique for all muscles; therefore, our results support the utilization of this method for cycling analyses.
18
Content available remote

Posture, Flexibility and Grip Strength in Horse Riders

39%
EN
Since the ability to train the horse to be ambidextrous is considered highly desirable, rider asymmetry is recognized as a negative trait. Acquired postural and functional asymmetry can originate from numerous anatomical regions, so it is difficult to suggest if any is developed due to riding. The aim of this study was therefore to assess symmetry of posture, strength and flexibility in a large population of riders and to determine whether typical traits exist due to riding. 127 right handed riders from the UK and USA were categorized according to years riding (in 20 year increments) and their competition level (using affiliated test levels). Leg length, grip strength and spinal posture were measured and recorded by a physiotherapist. Standing and sitting posture and trunk flexibility were measured with 3-D motion capture technology. Right-left differences were explored in relation to years riding and rider competitive experience. Significant anatomical asymmetry was found for the difference in standing acromion process height for a competition level (-0.07±1.50 cm Intro/Prelim; 0.02±1.31 cm Novice; 0.43±1.27 cm Elementary+; p=0.048) and for sitting iliac crest height for years riding (-0.23±1.36 cm Intro/Prelim; 0.01±1.50 cm Novice; 0.86±0.41 cm Elementary+; p=0.021). For functional asymmetry, a significant interaction was found for lateral bending ROM for years riding x competition level (p=0.047). The demands on dressage riders competing at higher levels may predispose these riders to a higher risk of developing asymmetry and potentially chronic back pain rather than improving their symmetry
EN
Purpose. Cycling has been shown to be associated with a high incidence of chronic pathologies. Foot orthoses are frequently used by cyclists in order to reduce the incidence of chronic injuries. The aim of the current investigation was to examine the influence of different varus orthotic inclines on the three-dimensional kinematics of the lower extremities during the pedal cycle. Methods. Kinematic information was obtained from ten male cyclists using an eight-camera optoelectronic 3-D motion capture system operating at 250 Hz. Participants cycled with and without orthotic intervention at three different cadences (70, 90 and 110 RPM). The orthotic device was adjustable and four different wedge conditions (0 mm - no orthotic, 1.5 mm, 3.0 mm and 4.5 mm) were examined. Two-way repeated measures ANOVAs were used to compare the kinematic parameters obtained as a function of orthotic inclination and cadence. Participants were also asked to subjectively rate their comfort in cycling using each of the four orthotic devices on a 10-point Likert scale. Results. The kinematic analysis indicated that the orthotic device had no significant influence at any of the three cadences. Analysis of subjective preferences showed a clear preference for the 0 mm, no orthotic, condition. Conclusions. This study suggests that foot orthoses do not provide any protection from skeletal malalignment issues associated with the aetiology of chronic cycling injuries.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.