Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
STAT proteins belong to the transcriptional factors family, and each of them performs a unique function in extracellular signal transduction and in direct regulation of transcription. Their function is based on controlling genes expression, which is involved in cell survival, proliferation, chemoresistance and angiogenesis. Phosphorylated STAT3 is observed in 70% of human cancers. STAT3 as an oncogenic protein is constitutively activated in many primary human cancers by different cytokines as: IL-6 IL-7, IL-10, IL-20, leptin, granulocyte colony-stimulating factor (G-CSF), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and oncogenic proteins such as Src and Ras. Moreover, STAT3 can be activated by receptor and nonreceptor tyrosine kinases such as: epidermal growth factor receptor kinase (EGFR), activated Janus kinase (JAK) or kinase regulating extracellular signals (ERK). An important role of STAT3 is the regulation of cancer cells autonomous properties. The blocking of STAT3 expression in human cancer cells inhibits proliferation in vitro and cancer progression in vivo. To inhibit gene expression of STAT3, antisense oligonucleotides, rybozimes and DNAzymes can be used. The STAT3 protein can be blocked by tyrosine kinase inhibitors, negative dominants for the STAT3 protein, complementary to small nonpeptide particle drugs. Among the newest methods of gene expression regulation is the RNA – RNAi method of interference.
PL
Białka STAT (signal transducer and activator of transcription – przekaźnik sygnału i aktywator transkrypcji) to rodzina czynników transkrypcyjnych, z których każdy pełni unikalną funkcję w przekazywaniu sygnałów zewnątrzko-mórkowych oraz bezpośrednim regulowaniu transkrypcji. Ich funkcja polega na kontroli ekspresji genów, które zaangażowane są w przeżycie komórek, proliferację, chemiooporność oraz angiogenezę. Ufosforylowany STAT3 obserwuje się w blisko 70% ludzkich nowotworów. Pełniąc rolę białka onkogennego ulega on konstytutywnej aktywacji w wielu pierwotnych nowotworach u ludzi, będąc aktywowanym przez wiele różnych cytokin, takich jak IL-6 IL-7, IL-10, IL-20, leptyna, czynnik stymulujący wzrost kolonii granulocytów (granulocyte colony stimulating factor – G-CSF), epidermalny czynnik wzrostu (epidermal growth factor – EGF), płytkowy czynnik wzrostu (platelet-derived growth factor – PDGF), a także białka onkogenne, m.in. Src i Ras. Ponadto STAT3 może być aktywowany poprzez receptorowe i niereceptorowe kinazy tyrozynowe, takie jak: kinaza receptora epidermalnego czynnika wzrostu (kinase of epidermal growth factor receptor – EGFR), aktywowana kinaza Janus (activated Janus kinase – JAK), kinazy regulujące sygnały zewnątrzkomórkowe (kinases regulating extracellular signals – ERK). Jego istotną funkcją jest regulacja autonomicznych właściwości komórek nowotworowych. Blokowanie ekspresji STAT3 w ludzkich komórkach nowotworowych hamuje proliferację in vitro oraz progresję nowotworów in vivo. W celu wyciszenia ekspresji genów STAT3 można wykorzystać oligonukleotydy antysensowe, rybozymy i DNAzymy. Samo białko STAT3 można zablokować wykorzystując inhibitory kinazy tyrozynowej, dominanty negatywne wobec białka STAT3, komplementarne wobec leków małe niepeptydowe cząsteczki. Wśród najnowszych metod regulacji ekspresji genów znajduje się metoda wykorzystująca proces interferencji RNA – RNAi.
EN
Modyfikacje epigenetyczne są zmianami regulującymi ekspresję genów. Spośród tych modyfikacji metylacja DNA w regionach promotorowych genów jest najlepiej poznaną zmianą. Za metylację DNA odpowiada rodzina metylo-transferaz DNA. Proces ten jest odwracalny w wyniku reakcji demetylacji, w których pośrednią rolę odgrywają białka TET. Hipometylacja DNA oraz hipermetylacja regionów promotorowych genów bogatych w wyspy CpG należy do epigenetycznych mechanizmów powszechnie występujących w wielu typach nowotworów. Epigenetyczny mechanizm transformacji nowotworowej związany jest nie tylko ze zmianami w poziomie metylacji poszczególnych onkogenów czy też genów supresorowych, ale także z potranslacyjnymi modyfikacjami białek histonowych wymuszających zmia-ny w strukturze chromatyny. Określone modyfikacje, takie jak: metylacja, acetylacja, fosforylacja, ubikwitynacja, biotynylacja, ADP-rybozylacja oraz sumoilacja, mogą wpływać na kondensację chromatyny oraz na białka i kom-pleksy enzymatyczne decydujące o dostępności DNA, co z kolei wpływa na upakowanie, replikację, rekombinację, procesy naprawy oraz ekspresję DNA. W mechanizmach modulacji ekspresji genów zaangażowanych w procesy prowadzące do rozwoju nowotworów znaczącą rolę odgrywają dwa główne rodzaje małych interferencyjnych RNA siRNA oraz miRNA. Uzyskiwane dane z prowadzonych badań pokazują, że mechanizmy epigenetyczne uczestniczą w procesach pro- wadzących do rozwoju nowotworów, a poszukiwanie epigenetycznych biomarkerów może być przydatne w terapii nowotworów.
PL
Epigenetic modifications are changes which can regulate gene expression. DNA methylation in gene promoter regions is the most well-known change among epigenetic modifications. The family of DNA methyltransferases is responsible for DNA methylation. Methylation is reversible due to the demethylation reaction, executed by TET proteins. DNA hypomethylation and hypermethylation of gene promoter regions rich in CpG islands belonging to epigenetic mechanisms commonly occur in many tumors. The epigenetic mechanism of malignant transformation is related not only to changes in the level of methylation of oncogenes or tumor suppressor genes, but also to post-translational modifications of histone proteins, forcing changes in the chromatin structure. Certain modifications, such as methy-lation, acetylation, phosphorylation, ubiquitination, biotinylation, ADP–ribosylation, and sumoylation may affect chro-matin condensation, protein and enzyme complexes that determine the availability of DNA, which then affects the condensation, replication, recombination and repair processes, as well as gene expression. Among the modulatory mechanisms of the expression of genes involved in the processes leading to cancer development, two main types of small interfering RNA play an important role: siRNA and miRNA. Research data Show that epigenetic mechanisms are involved in the processes leading to tumor development, and searching for epigenetic biomarkers may be useful in epigenetic cancer therapy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.