Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Based on mathematical modelling and numerical simulations, a control strategy for a Molten Carbonate Fuel Cell Hybrid System (MCFC-HS) is presented. Adequate maps of performances with three independent parameters are shown. The independent parameters are as follows: stack current, fuel mass flow and compressor outlet pressure. Those parameters can be controlled by external load, fuel valve and turbine-compressor shaft speed, respectively. The control system is purposed to meet many constraints: e.g. stack temperature, steam-to-carbon ratio, compressor surge limitation, etc. The aim is to achieve maximum efficiency of power generated within these constraints. Governing equations of MCFC-HS modelling are given. An operational line of the MCFC-GT system is presented which fulfils several constraints (temperature difference, cell temperature, etc.) The system is able to achieve efficiency of more than 62% even in part-load operation.
EN
This article describes results of a recent study of SOFC (Solid Oxide Fuel Cell) material properties using a numerical tool. The created model was validated against experimental data collected for two different solid oxide fuel cells. With focus on ionic and electronic conductivities, temperature influence was investigated. Results are presented, compared with available data, and discussed. Model of a micro-CHP (Combined Heat and Power) unit based on a SOFC stack was used for evaluation of system performance with different cells. On-site generated bio-syngas was considered as a fuel fed for the unit. The overall system efficiency was analyzed using an Aspen HYSYS modeling environment. Properties of two generic electrolyte materials were implemented in the models for evaluation of a co-generative unit operation. Electrical and overall efficiencies of systems based on those cells were compared and differences were observed. Micro-scale power units with fuel cells are a promising technology for highly efficient distributed cogeneration. As it was concluded, selection of a proper cell is crucial to assure high system efficiency. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.