Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Infrared and Raman investigations of two phases of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) based organic conductors with the same CF3CF2SO3− anion: β′-(BEDT-TTF)2CF3CF2SO3 and δ′-(BEDT-TTF)2CF3CF2SO3, are shortly reviewed and compared with the most typical infrared properties of the family of (BEDT-TTF)2RR′SO3 organic conductors, where R = SF5, CF3, and R′ are CH2, CF2, CHF, CHFCF2, and CH2CF2. The role of the molecular structur and spatial organization of the counterions is discussed.
EN
Infrared and Raman spectra of three chiral molecular conductors (EDT-TTF-OX)2AsF6, comprising of two salts based on enantiopure EDT-TTF-OX donor molecules and one based on their racemic mixture, have been measured as a function of temperature. In the frequency range of the C=C stretching vibrations of EDT-TTF-OX, charge-sensitive modes are identified based on theoretical calculations for neutral and oxidized EDT-TTF-OX using density functional theory (DFT) methods. The positions of C=C stretching modes in both Raman and infrared spectra of the (EDT-TTF-OX)2AsF6 materials are analyzed assuming a linear relationship between the frequency and charge of the molecule. The charge density on the EDTTTF-OX donor molecule is estimated to be +0.5 in all investigated materials and does not change with temperature. Therefore we suggest, that M-I transition observed in (EDT-TTF-OX)2AsF6 chiral molecular conductors at low temperature is not related to the charge ordering mechanism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.