Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Proprioceptive neuromuscular facilitation (PNF) is common practice for increasing range of motion, though little research has been done to evaluate theories behind it. The purpose of this study was to review possible mechanisms, proposed theories, and physiological changes that occur due to proprioceptive neuromuscular facilitation techniques. Four theoretical mechanisms were identified: autogenic inhibition, reciprocal inhibition, stress relaxation, and the gate control theory. The studies suggest that a combination of these four mechanisms enhance range of motion. When completed prior to exercise, proprioceptive neuromuscular facilitation decreases performance in maximal effort exercises. When this stretching technique is performed consistently and post exercise, it increases athletic performance, along with range of motion. Little investigation has been done regarding the theoretical mechanisms of proprioceptive neuromuscular facilitation, though four mechanisms were identified from the literature. As stated, the main goal of proprioceptive neuromuscular facilitation is to increase range of motion and performance. Studies found both of these to be true when completed under the correct conditions. These mechanisms were found to be plausible; however, further investigation needs to be conducted. All four mechanisms behind the stretching technique explain the reasoning behind the increase in range of motion, as well as in strength and athletic performance. Proprioceptive neuromuscular facilitation shows potential benefits if performed correctly and consistently.
EN
Functional changes following whole body vibration (WBV) training have been attributed to adaptations in the neuromuscular system. However, these changes have mainly been observed in the lower extremity with minimal change to the upper extremity. The purpose of the study is to examine the acute effect of shoulder vibration on joint position sense and selected muscle performance characteristics (peak torque, time to peak torque, and power). Forty young individuals (19.84 ± 1.73 yrs, 171.41 ± 7.73 cm, 70.07 ± 9.32 kg) with no history of upper body injuries were randomly assigned to an experimental (Vibration) or control (No-Vibration) group. To assess shoulder proprioception, active and passive joint position senses were measured on both internal and external rotation of the shoulder. The muscle performance variables (peak torque and time to peak torque) were measured using isokinetic dynamometer with the velocity of 60°/sec. After three bouts of 1 minute vibration training, the experimental group demonstrated a significant improvement in the internal rotation peak torque, time to peak torque and external rotation time to peak torque (p<0.05). However, no-significant differences were revealed for joint position sense, external rotation peak torque, and time to peak torque between the groups. Our findings suggest that short bouts of vibration treatment have a significant effect on shoulder muscle characteristics.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.