Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The Co3O4/LiNbO3 composites were synthesized by impregnation of LiNbO3 in an aqueous solution of cobalt nitrate and next by calcination at 400°C. The activity of produced samples has been investigated in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were studied using X-ray diffraction (XRD), diffuse reflectance (DR) UV-vis and resonance Raman spectroscopic techniques, respectively. The influence of cobalt content (range from 0.5 wt.% to 4 wt.%) on the photocatalytic activity of Co3O4/LiNbO3 composites for photocatalytic hydrogen generation has been investigated. Co3O4/LiNbO3 composites exhibited higher than LiNbO3 photocatalytic activity for hydrogen generation. The highest H2 evolution efficiency was observed for Co3O4/LiNbO3 composite with 3 wt.% cobalt content. The amount of H2 obtained in the presence of LiNbO3 and Co3O4/LiNbO3 (3 wt.% of cobalt content) was 1.38 µmol/min and 2.59 µmol min−1, respectively. [...]
EN
This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).
3
88%
EN
This work presents the influence of the sonication time on the efficiency of the metallic/semiconducting (M/S) fractionation of diazonium salt functionalized single-walled carbon nanotubes (SWCNTs) via free solution electrophoresis (FSE) method. The SWCNTs synthesized via laser ablation were purified from amorphous carbon and catalyst particles through high vacuum annealing and subsequent refluxing processes in aqua regia solutions, respectively. The purified material was divided into two batches. The SWCNTs samples were dispersed in 1% SDS solution in ultrasound bath for 2 and 12 hours. Both dispersed SWCNTs samples were functionalized with p-aminobenzoic acid diazonium salt and fractionated via free solution electrophoresis method. Afterwards, the fractionated samples were recovered, purified from surfactant/functionalities by annealing and investigated via UV-Vis-NIR optical absorption spectroscopy (OAS). The efficiency of the fractionation process was estimated through the comparison of the van Hove singularities (vHS) presented in the obtained fractions to the starting SWCNTs.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.