Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The single crystal X-ray structures and the spectroscopic properties of complexes of monensic acid (C36H62O11·H2O) with toxic metal ions of Cd(II) and Hg(II) are discussed. The cadmium(II) complex (1) is of composition [Cd(C36H61O11)2(H2O)2] and crystallizes in the monoclinic system (space group P2(1), Z = 2) with a = 12.4090(8), b = 24.7688(16), c = 14.4358(11) Å, β = 91.979(7)°. Two ligand monoanions are bound in a bidentate coordination mode to Cd(II) via the carboxylate and the primary hydroxyl oxygens occupying the equatorial plane of the complex. The axial positions of the inner coordination sphere of Cd(II) are filled by two water molecules additionally engaged in intramolecular hydrogen bonds. The Hg(II) complex (2), [Hg(C36H60O11)(H2O)], crystallizes in the orthorhombic system (space group P2(1)2(1)2(1), Z = 4) with a = 12.7316(2), b = 16.4379(3), c = 18.7184(4) Å. The monensic acid reacts with Hg(II) in a tetradentate coordination manner via both oxygen atoms of the carboxylate function and oxygens of two hydroxyl groups. The twofold negative charge of the ligand is achieved by deprotonation of carboxylic and secondary hydroxyl groups located at the opposite ends of the molecule. Hg(II) is surrounded by five oxygen atoms in a distorted square pyramidal molecular geometry. [...]
EN
The anticancer activity of monensic acid (MonH) and its biometal(II) complexes [M(Mon)2(H2O)2](M = Mg, Ca, Mn, Co, Ni, Zn) was evaluated against cultured human permanent cell lines established from glioblastoma multiforme (8MGBA) and cancers of the lung (A549), breast (MCF-7), uterine cervix (HeLa) and liver (HepG2). The viability and proliferation of the non-tumor human embryonic cell line Lep3 was also tested. The investigations were carried out using a thiazolyl blue tetrazolium bromide test, neutral red uptake cytotoxicity assay, crystal violet staining, colony forming method and double staining with acridin orange and propidium iodide. The results obtained reveal that the compounds applied at concentrations of 0.5–25 µg mL−1 for 24–72 h decrease the viability and proliferation of the treated cells in a time- and concentration-dependent manner. The metal(II) complexes studied (especially those of Co(II), Ni(II) and Zn(II)) have been found to express stronger cytotoxic and cytostatic activities than the non-coordinated monensic acid. The non-tumor human cell line showed strong chemosensitivity towards compounds tested comparable to that of cultured human tumor cell lines. [...]
3
100%
EN
The complexation of the non-selective β-blocker nadolol, HL, 1 with copper(II) leads to formation of mono-and dinuclear complexes depending mainly on the metal-to-ligand molar ratio. The mononuclear violet complex CuL2·2Solv, 2, was obtained in a soluble form at metal-to-ligand molar ratio Cu(II): HL ≤ 1: 10 in methanolic or slightly alkaline aqueous solutions. The dinuclear green complex Cu2L2Cl2·H2O, 3 was synthesized at Cu(II): HL ≥ 1: 2 molar ratio in methanolic solutions. The complexes were studied using spectral (UV-Vis, FT-IR, EPR), magnetochemical, thermogravimetric methods and elemental analysis. In the complexes nadolol acts as a monoanionic bidentate ligand coordinated to copper(II) through the NH-and the deprotonated OH-groups of its aminoalcohol fragment. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.