Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This article makes a brief review of the most important results obtained by the authors and their collaborators during the last four years in the field of the development of metal-insulator-silicon structures with dielectric film containing silicon nanocrystals, which are suitable for applications in radiation dosimetry. The preparation of SiOx films is briefly discussed and the annealing conditions used for the growth of silicon nanocrystals are presented. A two-step annealing process for preparation of metal-oxide-semiconductor structures with three-layer gate dielectrics is described. Electron Microscopy investigations prove the Si nanocrystals growth, reveal the crystal spatial distribution in the gate dielectric and provide evidences for the formation of a top SiO2 layerwhen applying the two-step annealing. Two types of MOS structures with three region gate dielectricswere fabricated and characterized by high frequency capacitance/conductancevoltage (C/G-V) measurements. The effect of gamma and ultraviolet radiation on the flatband voltage of preliminary charged metal-oxide-semiconductor structures is investigated and discussed.
EN
Methods to modify gate dielectrics of MIS structures by irradiation treatments and high-field electron injection into dielectric are considered. In addition, distinctive features of these methods used to correct parameters of MIS devices are studied. It was found out that negative charge, accumulating in the thin film of phosphosilicate glass (PSG) of the MIS structure having a two-layer gate dielectric SiO_2-PSG under the high-field injection or during the irradiation treatment can be used to correct the threshold voltage to improve the charge stability and raise the voltage of breakdown for the MIS devices. It is proved that the density of electron traps rises with the increasing thickness of the PSG film. In this paper a method to modify electrophysical characteristics of MIS structures by the high-field tunnel injection of electrons into the gate dielectric under the mode of controlled current stress is proposed. The method allows to monitor changing of MIS structure parameters directly during the modification process.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.