Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Amine absorption processes are widely used in the industry to purify refinery gases, process gases or natural gas. Recently, amine absorption has also been considered for CO2 removal from flue gases. It has a number of advantages, but there is one major disadvantage - high energy consumption. This can be reduced by using an appropriate sorbent. From a group of several dozen solutions, three amine sorbents were selected based on primary, tertiary and sterically hindered amines. The solutions were used to test CO2 absorption capacity, absorption kinetics and heat of CO2 absorption. Additional tests were performed on the actual absorber-desorber system to indicate the most appropriate sorbent for capturing CO2 from flue gases.
2
86%
EN
:This paper provides a discussion concerning results of CO2 removal from a gas mixture by the application of aqueous solutions of ethanoloamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) promoted with piperazine (PZ). The studies were conducted using a process development unit. Research of such a scale provides far more reliable representation of the actual industrial process than modelling and laboratory tests. The studies comprised comparative analyses entailing identical energy supplied to a reboiler as well as tests conducted at similar process efficiencies for both solvents. The results thus obtained imply that using AMP/PZ enables reduction of the solvent heat duty. Moreover, while using AMP/PZ temperature decrease was also observed in the columns.
PL
The overhead contact line (OCL) is the most effective way for supplying railway electric vehicles. The increase of the speed of vehicles increases power consumption and requires ensuring proper cooperation of pantographs with OCL. The paper describes the novel mathematical model of the OCL system and the simulation results. The primary objective is a more accurate analysis to increase the reliability of the evaluation of monitoring and diagnostics. The model was based on the Lagrange energy method. The paper presents the structure of the model and equations describing it, as well as the results of some laboratory tests that were performed to determine the model parameters. The selected results of simulations concerning the effects of force impact on the contact wire were carried out using the created model. The prepared program can be used for creating computer tools, which will support designers of OCL.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.