Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
X-ray photoelectron spectroscopy was employed to characterize the surface chemistry and electronic properties of the Zn_{1-x}Cd_{x}O semiconductor systems obtained at the different growth conditions. The effect of the growth conditions on the core and valence band spectra as well as room-temperature photoluminescence of the Zn_{1-x}Cd_{x}O films was investigated and discussed. Behavior of the X-ray photoelectron spectroscopy peaks indicated an increase of the cadmium and a depletion of the oxygen concentrations upon changing the Ar/O_2 gas ratio and dc power.
EN
Undoped, nitrogen-doped and aluminum-nitrogen co-doped ZnO films were deposited on Si substrates by magnetron sputtering using layer-by-layer method of growth. X-ray photoelectron spectroscopy was employed to characterize electronic properties of undoped and nitrogen doped ZnO films. The effects of N and N-Al incorporation into the ZnO matrix on the X-ray photoelectron spectroscopy core-level and valence-band spectra of the films were studied and discussed.
3
86%
EN
The photoresponsive structures prepared by magnetron sputtering of ZnO:N on p-Si substrates followed by vacuum evaporation of semi-transparent Ni film on ZnO surface were investigated. The mentioned structures show high sensitivity that sharply enhances with increase of applied voltage. Under a bias 5 V, the responsivities at λ = 390 and 850 nm are equal to 210 A/W and 110 A/W which correspond to the quantum efficiencies of 655 and 165, respectively. It is suggested that the observed high response is attributed to internal gain in phototransistor structure containing Ni/n-ZnO Schottky contact as emitter junction and n-ZnO/p-Si heterostructure as collector junction.
EN
Zinc oxide films were grown on sapphire substrates by direct current magnetron sputtering and irradiated by electrons with energy 10 MeV and fluences 10^{16} and 2 × 10^{16} cm^{-2}. As-grown and irradiated samples were investigated by X-ray diffraction and photoluminescence spectroscopy. It was found that radiation causes the appearance of complex defects, reducing the size of coherent scattering regions and the increase of the defect PL band.
EN
ZnO films doped with the cadmium (0.4-0.6%) were grown on crystalline sapphire c-Al_2O_3 substrates applying radiofrequency magnetron sputtering at the temperature of 400°C in Ar-O_2 atmosphere. The as-grown films were investigated in detail using X-ray diffraction, X-ray photoelectron spectroscopy, and cathodoluminescence spectra. The X-ray diffraction analysis revealed that the films possess a hexagonal wurtzite-type structure with the dominant crystallite orientation along the c axis. It was found that the small concentration of the cadmium significantly enhances the ultraviolet emission associated with excitonic transitions. We suggest that this enhancement effect mainly results from appearance of the cadmium isoelectronic traps, which may bind an exciton, thereby increasing the probability of radiation recombination. The effect of Cd isoelectronic impurity on structural and luminescent properties of ZnO films is discussed.
EN
Zn_{0.9}Cd_{0.1}O ternary alloys have been grown on the sapphire substrates by using the direct current (dc) magnetron sputtering. X-ray diffraction measurements showed that all samples were highly oriented films along the c-axis perpendicular to the substrate surface. X-ray diffraction confirmed that the crystal quality of Zn_{0.9}Cd_{0.1}O films can be controlled by changing the gas ratio of Ar/O_2. The optical properties of these films have been investigated by means of the optical transmittance and the low-temperature photoluminescence spectra. It was found that the optical band gap of the deposited films can be tuned by growth parameters. The luminescence processes are considered in the terms of alloy fluctuation.
EN
Multilayered ZnO films were deposited by rf magnetron sputtering on silicon and sapphire substrates. The aim of this work is to improve structural quality of ZnO thin films grown on just listed substrates. Presented X-ray diffraction data testify to remarkable relaxation of compressive stress in two- and three-layered ZnO films in comparison with single-layer one.
EN
Al/ZnO:N/Al and Ni/ZnO:N/Al diode photodetectors fabricated by dc magnetron sputtering of ZnO:N films on p-Si substrates are studied. The photocurrent-to-dark current ratio equal to 250 at λ= 390 nm and the time constant of photoresponse about 10 μs for Al/ZnO:N/Al structures with 4 μm interdigital spacing was achieved. The Ni/ZnO:N/Al diode structure has the rectification ratio ≈10² at bias 1 V, the maximal responsivity about 0.1 A/W is observed at 365 nm, and the measured time constant of photoresponse is about 100 ns.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.