Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 16

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 23
185 - 206
EN
Presented here are the results of investigations into the preparation of three-component dressing materials from various biopolymers in the form of a single-layer film which is suitable as a carrier for pain-relieving (lidocaine) and bacteriostatic (sulphanilamid) therapeutic agents. Physical-chemical, biological and usable properties of the prepared materials were tested and assessed. The amount of added active substance was adopted based on the dose recommended by the Polish Pharmacopeia for external medicinal preparations. Antibacterial activity against gram (-) Escherichia coli and gram (+) Staphylococcus aureus was assessed in some of the biocomposites by quantitative methods. The cytotoxic action in direct contact with the mouse fibroblast NCTC clone 929 was also estimated. Thermal analysis (DSC), infrared spectrophotometry (FTIR) and nuclear magnetic resonance spectroscopy were employed to investigate the impact of the variable contents of chitosan, alginate, carboxymethyl cellulose (CMC), and the active substance upon the chemical- and phase-structure of the prepared three-component polymeric biocomposites. It was found that the quantitative composition of the biocomposites and the additive of active substances lidocaine and sulphanilamide exert a vital impact upon their physical-mechanical and usable properties (imbibition, absorption). Investigations into the release of the medicinal substance from the investigated biocomposites to an acceptor fluid led to the conclusion that the kinetics of the process may be described by a complex first order rate equation with two exponential functions.
EN
The article presents method of extracting lignin from hardwood and softwood after chemical treatment. Lignin fractions were extracted from black liquid (the by-product of pulp and paper industry), in a different reaction environment. Biopolymer composites were obtained by combining extracted lignin fraction and microcrystalline chitosan, which can be used as preparations for innovative biopolymer materials that are applicable in medical and hygienic products. The studies were performed in order to evaluate MCCh/Lignin composites to suitability to construction of dressing materials in the form of sponges. The MCCh/Lignin composites were tested for different properties: mechanical, sorption and absorption. The obtained lignin fractions and MCCh/Lignin composites were characterized by different structures and chemical purity as confirmed by FTIR spectra.
EN
The article presents a method of extracting galactoglucomannas (GGMs) from softwood (spruce). GGMs were extracted using thermal and enzymatic treatment in an aqueous environment. The extracted GGMs, depending on the extraction method, were characterized by different composition of simple carbohydrates i.e. glucose, galactose and mannose, as well as by the average molecular weight. Evaluation of the composition of GGMs obtained was performed using GC/MS and SEC. Biopolymer composites were obtained by combining GGMs and microcrystalline chitosan (MCCh), which can be used as preparations for plant protection and growth stimulation. The studies were performed in order to evaluate biological activity of composites based on Petri dish test in which their ability to stimulate seed germination of selected plants was estimated. The effect of plant growth stimulation depended on GGMs composition of simple carbohydrates. GC/MS and SEC chromatographic tests and 13C NMR analysis enabled to establish the composition and structural changes of the obtained GGMs and biocomposites
EN
The pyruvate kinase isoenzyme M2 originating from the nucleoplasm and cytoplasm of tumor cells, with its highest affinity to the 2-phosphoenolpyruvate (2-PEP) and sensitivity to L-cysteine, contributes to an increased generation of energy as ATP, necessary for tumor cell proliferation. In the presence of L-cysteine, the isoenzyme M2 PK demonstrates the activity of histone kinase, transferring the phosphoryl group from 2-PEP to the ε-amine residue of the H1 histone lysine. Oligochitosans induce expression of the inducible nitric oxide synthase gene (iNOS), what results in an increased synthesis of nitric oxide, which reacts with L-cysteine and produces L-S-nitrosocysteine. Lack of L-cysteine contributes to inhibition of kinase activity of the H1 histone, an M2 PK isoenzyme. Decreased phosphorylation of the H1 histone contributes to inhibition of EAT cell proliferation. No effect on proliferation of normal cells that include the PK M1 isoenzyme has been observed in the presence of oligochitosans.
EN
The pyruvate kinase isoenzyme M2 originating from the nucleoplasm and cytoplasm of tumor cells, with its highest affinity to the 2-phosphoenolpyruvate (2-PEP) and sensitivity to L-cysteine, contributes to an increased generation of energy as ATP, necessary for tumor cell proliferation. In the presence of L-cysteine, the isoenzyme M2 PK demonstrates the activity of histone kinase, transferring the phosphoryl group from 2-PEP to the ε-amine residue of the H1 histone lysine. Oligochitosans induce expression of the inducible nitric oxide synthase gene (iNOS), what results in an increased synthesis of nitric oxide, which reacts with L-cysteine and produces L-S-nitrosocysteine. Lack of L-cysteine contributes to inhibition of kinase activity of the H1 histone, an M2 PK isoenzyme. Decreased phosphorylation of the H1 histone contributes to inhibition of EAT cell proliferation. No effect on proliferation of normal cells that include the PK M1 isoenzyme has been observed in the presence of oligochitosans.
EN
Investigations are presented in the preparation of composite dressing material based on two biopolymers -chitosan and sodium alginate with the addition of sulfanilamide as medication designed for the healing of bedsores. The dressing was prepared in the form of film. The biopolymers used in the construction of the film make the dressing biodegradable and resorbable in the wound’s environment. Mechanical properties of the film were tested: thickness, extension strength, tenacity and elongation at maximum stress The ability of the material to match the wound was examined, too, as well as the transmission of water vapor. Sulfanilamide as bacteriostatic agent was added to the prepared composites. Mechanical and sorption properties of the composite dressings with addition of the active substance depend largely on their composition. The sorption properties were tested before and after addition of the medication .The release of the medication is intricate and proceeds according to kinetics of first order. Susceptibility of the composite materials to hydrolytic and enzymatic degradation was assessed.
EN
Among characteristic properties of cancers, there is their increased glycolytic activity.Contrary to normal cells, neoplastic cells use anaerobic glycolysis, even when a sufficient amount of oxygen is available. The intensity of the process is associated with a considerable demand for energy in the form of ATP. Akt, which - acting through the mTOR pathway - activates the HIF-1 factor, which in turn activates hexokinase that participates in glucose phosphorylation, stimulates the transport of glucose to cells via increasing glucose transporters (GLUT) and activates lactate dehydrogenase (which transforms pyruvate to lactate). Chitosan, as well as products of its degradation - oligochitosans - contribute to inhibiting the activity of the Akt kinase, and thus contribute to inhibiting excessive glycolytic activity of Ehrlich ascites tumor (EAT) cells and to decreasing proliferation of these cells.
EN
Preliminary studies of proliferation of Ehrlich ascites tumor (EAT) cells and normal mammary gland epithelial cells have demonstrated the process to be inhibited by degradation products of microcrystalline chitosan, i.e. oligomers. Inhibition of proliferation has been also accompanied by a decreased activity of the M2 pyruvate kinase (PK) isoenzyme in nucleoplasm, what may indicate the role of this enzyme in regulation of tumor cell proliferation. Determinations of nitrogen oxide in tumor and normal cells point to a higher level of this endogenous effector in normal cells. An increase of nitrogen oxide levels in Ehrlich ascites tumor cells effected by chitosan oligomers may indicate increased nitrosylation, and particularly an increased amount of compounds containing sulfhydryl groups and their participation in regulation of nucleoplasm M2 PK isoenzyme activity. Chitosan oligomers have smaller molecules as compared to microcrystalline chitosan and for this reason appear to be more effective than the latter in acting upon the negatively charged cell membrane surfaces, thus contributing to proliferation inhibition.
EN
L-S-nitrosocysteine formation in EAT tumor cells and normal CRL-1636 cells incubated with microcrystalline chitosan was confirmed by RP-HPLC. The metabolite was identified based on UV-VIS spectra. The formation of L-S-nitrosocysteine in EAT tumor cells contributes to decreasing the level of L-cysteine in these cells. L-cysteine as an effector of the bifunctional M2 isoenzyme of pyruvate kinase (PK) initiates its histone kinase activity, which is responsible for histone H1 phosphorylation. A decrease of L-cysteine level in EAT tumor cells contributes to lack of histone H1 phosphorylation by the M2 PK isoenzyme and by the same token to inhibition of EAT cell proliferation.
EN
Polysaccharides are macromolecular polymers that manifest ability toward the forming of fibres, film and coatings. Some of their specific properties like biodegradability and biocompatibility make them suitable for medical application. Chitin, chitosan and alginates are basic polymers mostly used in the preparation of medical biomaterials. In the Institute of Biopolymers and Chemical Fibres (IBWCh) multidirectional investigations are in full swing concerned with the use medical of polysaccharides and their various useful forms. The research includes amongst: multifunctional dressing materials, implants and other polysaccharide biomaterials.
EN
Isoenzyme M2 pyruvate kinase, which is a marker of cancer transformation, can take both tetramer (cytosol) and dimer (nucleus) forms. The former is responsible for ATP synthesis, and the latter demonstrates histone H1 kinase activity. Regulation of the expression of pyruvate kinase through which Akt controls the expression of genes involved in Ehrlich ascites tumour (EAT) cell proliferation, migration and death, also involves cross-talk with the other signalling pathways, transcription factors and co-regulatory proteins such as β-catenin and c-Myc. Treatment of EAT cells with chitosans significantly reduced their proliferation (by 45-60%), expression of nuclear β-catenin, c-Myc as well as cell migration. After 48–72 hours of treatment of the cell with oligochitosans, lower levels of p-Akt were detected. Simultaneously, decreased expression of isoenzyme M2 PK protein levels was observed. The dimeric form (nucleus) can participate in H1 histone phosphorylation, which contributes to increased EAT cell proliferation.
12
Publication available in full text mode
Content available

ADVANCED CELLULOSIC MATERIALS

62%
EN
Aim of the work was to prepare a method of producing chitosan and chitosan-alginate nanoparticles designed for the modification of textile cellulosic products in hygiene and medical application. Spectrophotometry was used in the estimation of the prepared nanoparticles; analyzed, too, was the particle size and antibacterial and antifungal activity.
EN
A decrease in migration of tumor cells incubated with the investigated chitosan preparations was correlated with a decreased activity of MMP-2 and MMP-9 metalloproteinases, what significantly affected inhibition of tumor cell proliferation. In the investigations of the effects of various chitosan preparations on expression of PCNA, Akt and β-catenin in the normal human 184A1 cells and in breast carcinoma MCF7 cells evaluated at the protein level, significant differences in inhibition of expression of selected genes were noted in the tumor cells. Similarly as in the case of human cells, in mouse cells, the differences in expression of the investigated genes involved solely the Ehrlich carcinoma cells. In the presence of the investigated chitosan preparations, there was observed inhibition of expression of the N-cadherin, β-catenin, Akt and PCNA genes. In case of p21 protein, its level increased, similarly as in the human breast carcinoma cells, what may also be related to phosphorylation of the protein, its capture by the cytosol and prolonging its half-life as compared to the non-phosphorylated form. In case of the normal human 181A1 cells and mouse CRL 1636 cells, no significant alterations were noted in expression of the investigated genes in presence of the employed chitosan preparations.
EN
Oligochitosans obtained through degradation of macromolecules of chitosan with a high degree of deacetylation turned out to be biologically active, contributing to an increase of nitric oxide levels in Ehrlich ascites tumor (EAT) cells through inducing expression of the isoform of inducible nitric oxide synthase (iNOS) gene. An increase of NO levels in EAT cells in the presence of the investigated oligochitosans might contribute to nitrosylation of L-cysteine – an allosteric effector of the M2 isoenzyme of pyruvate kinase (PK), which switches the PK kinase activity, responsible for ATP synthesis, to the histone kinase activity that may participate in histone H1 phosphorylation. Lack of the histone activity of the PK M2 isoenzyme may contribute to decreased histone H1 phosphorylation and thus inhibit EAT cells proliferation.
EN
Presented herein are investigations in the preparation of an advanced , human-and environmentfriendly plant protection composition based on selected bioactive biopolymers of the polysaccharide family. In the Institute of Biopolymers and Chemical Fibres the biopolymers were prepared and the biological activity of chitosan in the form of salt and gel and of hemicelluloses (galactoglucomannans) and of their compositions was tentatively evaluated by way of plate tests. Estimated was the impact of such preparations upon the stimulation of the germination rate of radish seeds at concentration of 0.1, 0.01 and 0.005% after 72 hours. The efficacy of the preparations was evaluated based on the number of germinated seeds in the green mass of the sprouts and their length in comparison to a reference in water at pH = 7.0. In Research Institute of Horticulture, Skierniewice, Poland the usefulness of selected iopolymer preparations was evaluated as agents to protect decorative plants against some pathogens (on leaves, in soil) such as Phytophtora cryptogea causing decay of shoots and roots. It could be found that the biopolymer compositions applied to the soil provided a much better rooting of chrysanthemum cuttings in a Phytophtora cryptogea - infected soil. The cuttings were growing much faster and the number of infected ones was largely reduced. The usefulness of a number of chitosan formulations was also evaluated for seed pickling. It was found that the formulations exerted a distinctly positive impact upon the germination, growth and health of the seedlings. Laboratory and greenhouse testing was made in the Institute of Plant Protection, Poznań, Poland where the biological activity of some biopolymer compositions was evaluated. A first selection of the biopolymers was done based on an in vitro examination of the impact upon bacteria growth. (Gram negative - Erwinia amylovora and Gram positive Clavibacter ichiganensis ) on agar or agarose plates and upon the generation of necrotic stains on beans and tobacco caused by lucerne mosaic virus and tobacco mosaic virus respectively. It was found that the preparations with original biopolymer concentration had not affected the viruses directly but stimulated the plants’ immunity against the pathogens.
EN
Investigations are presented in the preparation of a first aid haemostatic dressing that would exhibit an adequate haemostatic capacity in injuries and surgical wounds, an antibacterial activity to prevent primary and secondary infections, and offer safety in use
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.