Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Reduction of thermal conductivity remains a main approach relevant to enhancement of figure-of-merit of most thermoelectric materials. Melt spinning combined with spark plasma sintering appears to be a vital route towards fine-grain skutterudites with improved thermoelectric performance. However, upon high-temperature processing the Fe_{4-x}Co_{x}Sb_{12}-based skutterudites are prone to decompose into multiple phases, which deteriorate their thermoelectric performance. In this study we addressed the effects of combined melt spinning and spark plasma sintering on the phase composition and microstructural properties of filled Fe_{4-x}Co_{x}Sb_{12} as well as their influence on thermoelectric characteristics of these compounds. The crystallites of filled Fe_{4-x}Co_{x}Sb_{12} were effectively reduced to sizes below 100 nm upon melt spinning, but also severe decomposition with weakly preserved nominal phase was observed. Spark plasma sintering of melt spun skutterudites resulted in even further reduction of crystallites. Upon short annealing and sintering the n-type materials easily restored into single-phase filled CoSb₃ with nanoscale features preserved, while secondary phases of FeSb₂ and Sb remained in p-type compounds. Relatively high figure-of-merit ZT_{max} of 0.9 at T ≈ 400°C has been gained in nanostructured Yb_{x}Co₄Sb_{12}, however, no significant reduction of thermal conductivity was observed. Abundant impurities in p-type filled Fe_{4-x}Co_{x}Sb_{12} led to drastic drop in their ZT, which even further degraded upon thermal cycling.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.