Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The Ti₃AlC₂-, (Ti,Nb)₃AlC₂- and Ti₂AlC-based materials turned out to be more resistant than Crofer JDA steel in oxidizing atmosphere as 1000 h long tests at 600°C have shown. But the amounts of oxygen absorbed by the materials during testing were different. The Ti₂AlC-based material demonstrated the lowest oxygen uptake, (Ti,Nb)₃AlC₂-based absorbed a somewhat higher amount and the highest amount was absorbed by Ti₃AlC₂-based material. Scanning electron microscopy and the Auger study witnessed that amounts of oxygen in the MAX phases before the exposure in air were as well different: the approximate stoichiometries of the matrix phases of materials were Ti_{3.1-3.2}AlC_{2-2.2}, Ti_{1.9-4}Nb_{0.06-0.1}AlC_{1.6-2.2}O_{0.1-1.2} and Ti_{2.3-3.6}AlC_{1-1.9}O_{0.2-0.6}, respectively. The higher amount of oxygen present in the MAX phase structures may be the reason for higher resistance to oxidation during long-term heating in air at elevated temperature. The studied materials demonstrated high stabilities in hydrogen atmosphere as well. The bending strength of the Ti₃AlC₂- and (Ti,Nb)₃AlC₂-based materials after keeping at 600°C in air and hydrogen increased by 10-15%, but the highest absolute value of bending strength before and after being kept in air and hydrogen demonstrated the Ti₂AlC-based material (about 590 MPa).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.