Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Phase transitions from insulator to metal induced by thermal excitation and by photo-irradiation at the surface of β'-(BEDT-TTF)(TCNQ) are investigated using vibrational sum frequency generation spectroscopy. The results are compared with linear reflectivity measurements which detect the information mainly from bulk. IR absorption spectra of a_{g} vibrational modes of TCNQ induced by the dimerization are observed using vibrational sum frequency generation spectroscopy, and its intensity is found to become smaller by thermal excitation indicating the transition to the metal phase. Time-dependent degree of dimerization is also observed by pump-probe experiments with almost the same statistics as the static measurements. On the other hand, in the reflectivity experiments, the reduction of dimerization is also observed by elevating the temperature, however, the spectral shapes are deformed for the time-resolved measurements. These results imply that the different dynamics occur at the surface and in the bulk.
EN
Slow dynamics of the initially photoinduced state has been observed by the pump-probe type time-resolved reflection spectroscopy in the charge separated phase of the half-filled strong dimer system, Et_2Me_2Sb[Pd(dmit)_2]_2 (dmit = 1,3-dithiol-2-thione-4,5-dithiolate). We have succeeded to reproduce the probe photon energy dependence of the time profile qualitatively in the time delay range from 10 ps to 1 ns assuming the dynamical expansion of the domain of the photo-induced dimer-Mott insulating phase in the host charge-separated one.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.