Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Current trends in the production of ethanol from lingocellulosics are reviewed. Particular emphasis is laid on the preytreatment of the lignocellulose materials and their simultaneous saccharfication and fermentation to ethyl alcohol.
EN
Extracellular α-(1 → 3)-glucanase (mutanase, EC 3.2.1.84) produced by Trichoderma harzianum CCM F-340 was purified to homogeneity by ultrafiltration followed by ion exchange and hydrophobic interaction chromatography, and final chromatofocusing. The enzyme was recovered with an 18.4-fold increase in specific activity and a yield of 4.3%. Some properties of the α-(1 → 3)-glucanase were investigated. The molecular mass of the enzyme is 67 kDa, as estimated by SDS/PAGE, its isoelectric point 7.1, and the carbohydrate content 3%. The pH and temperature optima are 5.5 and 45°C, respectively. The enzyme is stable over a pH range of 4.5-6.0 and up to 45°C for 1 h. The Km and Vmax under standard assay conditions are 0.73 mg/ml and 11.39 x 10-2 µmol/min/mg protein, respectively. The enzyme activity is stimulated by addition of Mg2+ and Na+, and significantly inhibited by Hg2+. The α-(1 → 3)-glucanase preparation preferentially catalyzed the hydrolysis of various streptococcal mutans and fungal α-(1 → 3)-glucans. The 20-residue N-terminal sequence of the enzyme is identical with those of other α-(1 → 3)-glucanases from the genus Trichoderma, and highly similar to those from other fungi. The purified α-(1 → 3)-glucanase was effective in preventing artificial dental plaque formation. The easy purification from fermentation broth and high stability, and the effective inhibition of oral biofilm accumulation make this α-(1 → 3)-glucanase highly useful for industrial and medical application.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.