Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 19

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the present work, phase constitution and thermomagnetic properties of LaFe_{11.14}Co_{0.66}Si_{1.2-x}Al_{x} (where x = 0.1, 0.2, 0.3) alloys were investigated. Ingot samples were obtained by arc-melting under the low pressure of Ar atmosphere. Subsequently samples were annealed at 1323 K for 15 days. X-ray diffraction of all samples revealed coexistence of two crystalline phases dominant La(Fe,Si)_{13}-type and minor bcc α -Fe. Furthermore, the magnetic measurements at various temperatures allowed to study the Curie temperature, magnetic entropy changes and relative cooling power.
EN
The investigations were carried out on Sm-Fe-N permanent magnets produced by reactive diffusion method. The magnets consist of hard magnetic phases: Sm_2Fe_{17}N_{0.86} and SmFe_5 and soft magneticα-Fe phase. From the comparison of experimentally determined angular dependence of coercive field with appropriate theoretical predictions and from the dependence of coercive field on the external magnetic field determined from the minor hysteresis loops, it was stated that magnetization reversal process in Sm-Fe-N magnets is controlled by the nucleation of reversed domains process.
EN
Investigations were carried out on Sm-Fe-N permanent magnet produced by the reactive diffusion method with different grain sizes (from 8.6 to 0.97μm). The rotational hysteresis energy has been measured as a function of the applied field. The proposed model of rotational hysteresis energy is in good agreement with the experimental results. It is shown that the magnetization reversal process in Sm-Fe-N magnet is controlled by the nucleation of reversed domains.
EN
The magnetization reversal processes in magnets derived from rapidly solidified Pr_{9}Fe_{52}Co_{13}Zr_{1}Nb_{4}B_{21} alloy samples were studied by analysis of minor hysteresis loops and recoil curves. The studies were carried out on suction-cast 1 mm diameter rod, 1 mm thick plate, 3 mm outer diameter (o.d.) tube and melt-spun ribbon samples subjected to annealing at 983 K for 5 min. The X-ray diffraction analysis has shown multiphase constitution of the samples. Structural and magnetic studies indicated that the initial state of microstructure and phase composition affects the magnetization reversal processes in annealed samples due to a variation of microstructure in samples of various shapes. Magnetic studies allowed estimation of the mean values of nucleation and pinning fields that control the magnetization reversal processes.
|
2017
|
vol. 131
|
issue 4
979-981
EN
The influence of boron contents on the glass forming abilities and magnetic properties of melt-spun ribbon samples produced from Pr₉Fe_{50+x}Co₁₃Zr₁Nb₄B_{23-x} (x=0, 2, 5, 8) alloys, were investigated. For all compositions, the rapidly solidified samples were fully amorphous, which was confirmed by X-ray diffractometry and the Mössbauer spectroscopy. Differential scanning calorimetry and differential thermal analysis studies revealed good glass forming abilities for all investigated specimens and allowed to determine thermal stability parameters of the amorphous phase. For all alloy ribbons, very large supercooled liquid region before crystallization ΔT_x reaching 100 K was measured. The Kissinger plots were constructed to determine the activation energies for crystallization. Annealing of specimens at temperatures ranging from 923 K to 1033 K for 5 min resulted in significant change of the phase constitution. The X-ray diffractometry studies have shown presence of hard magnetic Pr₂(Fe,Co)₁₄B and paramagnetic Pr_{1+x}Fe₄B₄ phases. Furthermore, with the increase of B contents in the alloy composition crystallization of α-Fe phase occurs at wider range of the annealing temperature. Anomaly of both thermal and magnetic properties was observed for the Pr₉Fe₅₂Co₁₃Zr₁Nb₄B₂₁ alloy ribbons.
EN
In the present study the rapidly quenched Pr_9Fe_{50 + x}Co_{13}Zr_1Nb_4B_{23 - x} (x = 0, 2, 5, 8) alloy samples produced in a form of 100 mm^2 plate of various thicknesses were investigated. The X-ray diffraction revealed changes in the phase constitution of as-cast samples depending on the alloy composition and plate thickness. The presence of hard magnetic Pr_2(Fe,Co)_{14}B phase was observed in 0.5 mm thick plates of the x = 8 alloy, while fully glassy structure was shown in 0.5 mm thick plates of the x = 0 alloy. It was shown in the present paper that magnetic properties of annealed samples originated from different microstructure of as-cast samples.
EN
Magnetization reversal processes in the magnets derived from the Fe_{60}Co_{13}Zr_1Ti_3Pr_9B_{14} alloy were investigated. It was shown that the processing technique affects the magnetization reversal processes. For the nanocrystalline ribbon samples pinning of the domain walls arises at low external magnetic fields while nucleation of reversed domains occurs at higher fields. However, the nucleation fields are lower than the pinning fields for the nanocrystalline rod and tube samples produced by suction-casting technique.
EN
The aim of present work was to study the influence of partial substitution of Co by Mn in the LaFe_{11.2}Co_{0.7}Si_{1.1} alloy on its structure and magnetic properties. The X-ray diffraction studies revealed coexistence of dominant pseudobinary fcc La(Fe,Si)_{13}-type phase with minor fraction of α-Fe. Moreover, the increase of Mn content causes decrease of the lattice parameter and the Curie temperature. The values of magnetic entropy change obtained for both investigated alloys are almost identical and close to 12 J/(kg K) under the change of external magnetic field ≈5 T. Investigations of magnetic phase transition confirmed its second order nature in the case of both specimens.
EN
The aim of this paper was to study the phase constitution, magnetic properties and magnetization reversal processes in the rapidly solidified bulk (Pr,Dy)-(Fe,Co)-B alloys doped with Zr, Ti, Mn and Ni. The 3 mm outer diameter tubes samples of the Pr₈Dy₁Fe₆₀Co₇Ni_{(6x)}MnₓB₁₄Zr₁Ti₃ (where x = 0, 3, 6) alloys were produced by suction-casting technique. The admixture of Zr was introduced in order to improve their glass forming abilities while Dy was substituted to enhance the magnetocrystalline anisotropy of hard magnetic phase. The effect of Ni and Mn addition on the phase constitution and magnetic properties was studied in the presented work.
EN
In the present work, the phase constitution and magnetic properties of the LaFe_{11.14}Co_{0.66}Si_{1.2-x}Ga_{x} (where x=0.1, 0.2, 0.3) alloys, were investigated. It was revealed that increase of Ga content in the alloy composition causes the rise of lattice parameter of the La(Fe,Si)_{13}-type phase, which causes increase of the Curie temperature. However, the increase of Ga addition leads to decrease of magnetocaloric effect.
EN
In this study, we have investigated the microstructure and magnetic entropy change of annealed LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} alloy in a form of bulk samples and melt-spun ribbons. The bulk samples were annealed at 1323 K for 20 and 49 days and the maximum values of the magnetic entropy change | ΔS_M | obtained after the change of external magnetic field from 0 to 5 T reached 7.5 J kg^{-1} K^{-1} and 7.7 J kg^{-1} K^{-1}, respectively. For the melt-spun ribbon annealed at the same temperature for 1 h, the maximum value of | ΔS_M | reaches 4.5 J kg^{-1} K^{-1}. The temperature corresponding to the maximum entropy change increased from 292 K for bulk samples to 295 K for melt-spun ribbons. The lower values of the magnetic entropy change in the melt-spun LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} are attributed to the presence of higher volume fraction of the secondary bcc-Fe phase in the ribbon samples.
EN
The aim of the present work was to investigate the phase constitution and magnetic properties of the rapidly solidified Fe₆₅Pr₉B₁₈W₈ alloy ribbons in the as-cast state and subjected to annealing. The base alloy was prepared by arc-melting of the high purity elements under the Ar atmosphere. The ribbon samples were obtained by the melt-spinning technique under a low pressure of Ar. The studies have shown an amorphous structure of the ribbon in the as-cast state and its soft magnetic properties. Annealing at various temperatures for 5 min resulted in an evolution of the phase constitution that caused changes in magnetic properties of the alloy. The crystallization behavior was studied using differential scanning calorimetry. In order to determine the phase composition of annealed ribbons, X-ray diffractometry was used. The evolution of microstructure and phase constitution was verified by the Mössbauer spectroscopy. The magnetic properties were determined from hysteresis loops measured by a vibrating sample magnetometer in the external magnetic field up to 2 T at room temperature.
EN
In the following article the magnetic properties and phase composition of (Nd₁₀Fe₆₇B₂₃)_{100-x}Nb_{x} (where x=5, 6, 7, 8, 9) alloys in the form of ribbons are discussed. The X-ray diffraction studies revealed the coexistence of amorphous and nanocrystalline structures consisting of Nd₂Fe₁₄B, Nd_{1+ε}Fe₄B₄ and metastable Nd₂Fe₂₃B₃ phases. The shape of M_{rev} (M_{irr}) suggests that the magnetization reversal proceeds through the nucleation of the reversal domain for the ribbon doped with 5-7 at.% of Nb and the subsequent pinning of the domain walls for ribbons doped with 8 and 9 at.% of Nb.
EN
The aim of the present work was to study the influence of annealing conditions on magnetic properties and the phase constitution of rapidly solidified Fe_{64.32}Pr_{9.6}B_{22.08}W_{4} alloy ribbons. The base alloy was prepared by arc-melting of the high purity elements under an Ar atmosphere. Subsequently the ribbon samples were obtained by melt-spinning technique under low pressure of Ar. In order to develop nanocrystalline structure, the samples were annealed at 1003 K for 5, 10, 20 and 30 min. The room temperature magnetic properties were determined from hysteresis loops measured by VSM magnetometry in the external magnetic field up to 2 T. For comparison the influence of annealing temperature on magnetic properties was studied for the same alloy composition. The ribbons were annealed at temperatures from 929 K to 1023 K for 5 min. X-ray diffractometry was used to determine the phase composition of annealed ribbons. Heat treatment resulted in an evolution of the phase constitution, that caused changes in magnetic properties of the alloy.
EN
In the present work the magnetic properties and phase constitution of (Nd_{10}Fe_{67}B_{23})_{100-x}Nb_{x} (where x=1, 2, 3, 4) alloys in a form of ribbons were investigated. The ribbon samples were obtained by controlled atmosphere melt-spinning technique. In order to generate the nanocrystalline microstructure, ribbons were annealed at various temperatures (from 923 K to 1023 K) for 5 min. Subsequent annealing resulted in an evolution of the phase constitution accompanied by a change of their magnetic properties. The X-ray diffraction studies show presence of hard magnetic Nd_{2}Fe_{14}B, paramagnetic Nd_{1+ε }Fe_{4}B_{4} and ferromagnetic metastable Nd_{2}Fe_{23}B_{3} phases. The best hard magnetic parameters were measure for annealed ribbons of the (Nd_{10}Fe_{67}B_{23})_{96}Nb_{4} alloy.
EN
Melt-spun ribbons were produced from the Pr₈Dy₁Fe₆₀Co₇Mn₆B₁₄Zr₁Ti₃ base alloy at the surface velocity of the cooper wheel of 30 m/s. The studies showed amorphous structure of ribbons and their soft magnetic properties. X-ray diffraction was used to determine phase constitution of all obtained samples. Annealing of ribbons caused formation of nanocomposite structure, which was a result of coexistence of hard magnetic RE₂(Fe,Co)₁₄B and soft magnetic α-Fe phases. Basic magnetic properties such as: coercivity _{J}H_{c}, remanence J_{r} and maximum energy product (BH)_{max} were determined from the measured hysteresis loops. The microstructure of selected specimens was observed by transmission electron microscopy technique.
EN
In the present study, the influence of Al and Ga admixture on the lattice parameters and the Curie point T_{C} of the La(Fe, Co, Si)_{13} compound was discussed. The measurements were carried out on ribbon samples of LaFe_{11.0}Co_{0.8}Si_{1.2}, LaFe_{11.0}Co_{0.8}(Si_{0.4}Al_{0.6})_{1.2} and LaFe_{11.0}Co_{0.8}Si_{1.1}Ga_{0.1} alloys. The samples were subjected to annealing in the inert gas atmosphere at 1323 K for 24 h. The change of lattice parameters a with admixture of Al and Ga was determined from the X-ray diffraction analysis. Furthermore, changes of the Curie point with the alloy composition were observed.
EN
In the present work, Curie temperature, refrigeration capacity and cooling power of the LaFe_{11.0}Co_{0.8}(Si_{1-x}Al_{x})_{1.2} (where x=0, 0.6) alloys, are investigated. The value of Curie temperature was found to be 280 and 290 K for x=0 and 0.6, respectively. The determined values of cooling power (RCP) and refrigeration capacity (RC) differ only slightly for both investigated alloys. The maximum values of RCP and RC obtained under the change of external magnetic field from 0 to 5 T are 433 J/kg (for x=0) and 290 J/kg (for x=0.6), respectively.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.